mnist torch加载fashion_pytorch进行fashion mnist数据集分类

最近在撸pytorch框架,这里参考深度学习经典数据集mnist的“升级版”fashion mnist,来做图像分类,主要目的是熟悉pytorch框架,代码中包含了大量的pytorch使用相关的注释。

1. 数据集介绍

(1)MNIST

MNIST是深度学习最基本的数据集之一,由CNN鼻祖yann lecun建立的一个手写字符数据集,包含60000张训练图像和10000张测试图像,包含数字0-9共10个类别.

(2)FASHION MNIST

由于MNIST数据集太简单,简单的网络就可以达到99.7%的top one准确率,也就是说在这个数据集上表现较好的网络,在别的任务上表现不一定好。因此zalando research的工作人员建立了fashion mnist数据集,该数据集由衣服、鞋子等服饰组成,包含70000张图像,其中60000张训练图像加10000张测试图像,图像大小为28x28,单通道,共分10个类,如下图,每3行表示一个类。

数据集信息如下:

数据集共分10个类,类别描述如下:

2. pytorch进行分类

pytorch中提供了这个数据集的下载接口,下面分别使用全连接网络和CNN网络来进行分类

(1)FC网络

输入图像大小为28x28,设计如下全连接网络,代码命名为02_fashion_mnist_fc.py

FC1(784) + Relu(1000) + FC2(500) + Relu + FC3(200) + Relu3 + FC4(10) + log_softmax

from __future__ import print_function # 从future版本导入print函数功能

import argparse # 加载处理命令行参数的库

import torch # 引入相关的包

import torch.nn as nn # 指定torch.nn别名nn

import torch.nn.functional as F # 引用神经网络常用函数包,不具有可学习的参数

import torch.optim as optim

from torchvision import datasets, transforms # 加载pytorch官方提供的dataset

class Net(nn.Module):

def __init__(self):

super(Net, self).__init__()

self.fc1 = nn.Linear(784, 1000) # 784表示输入神经元数量,1000表示输出神经元数量

self.fc2 = nn.Linear(1000, 500)

self.fc3 = nn.Linear(500, 200)

self.fc4 = nn.Linear(200, 10)

def forward(self, x):

x = x.view(-1, 28*28)

x = F.relu(self.fc1(x))

x = F.relu(self.fc2(x))

x = F.relu(self.fc3(x))

x = self.fc4(x)

return F.log_softmax(x, dim=1) #Applies a softmax followed by a logarithm, output batch * classes tensor

def train(args, model, device, train_loader, optimizer, epoch):

model.train()

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)

optimizer.zero_grad()

output = model(data)

loss = F.nll_loss(output, target) # negative log likelihood loss(nll_loss), sum up batch cross entropy

loss.backward()

optimizer.step() # 根据parameter的梯度更新parameter的值

#print(epoch, batch_idx, type(batch_idx))

if batch_idx % args.log_interval == 0:

print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

epoch, batch_idx * len(data), len(train_loader.dataset),

100. * batch_idx / len(train_loader), loss.item()))

def test(args, model, device, test_loader):

model.eval()

test_loss = 0

correct = 0

with torch.no_grad(): #无需计算梯度

for data, target in test_loader:

data, target = data.to(device), target.to(device)

output = model(data)

test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss

pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability

correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(

test_loss, correct, len(test_loader.dataset),

100. * correct / len(test_loader.dataset)))

def main():

# Training settings

parser = argparse.ArgumentParser(description='PyTorch MNIST Example')

parser.add_argument('--batch-size', type=int, default=64, metavar='N',

help='input batch size for training (default: 64)')

parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',

help='input batch size for testing (default: 1000)')

parser.add_argument('--epochs', type=int, default=10, metavar='N',

help='number of epochs to train (default: 10)')

parser.add_argument('--lr', type=float, default=0.01, metavar='LR',

help='learning rate (default: 0.01)')

parser.add_argument('--momentum', type=float, default=0.5, metavar='M',

help='SGD momentum (default: 0.5)')

parser.add_argument('--no-cuda', action='store_true', default=False,

help='disables CUDA training')

parser.add_argument('--seed', type=int, default=1, metavar='S',

help='random seed (default: 1)')

parser.add_argument('--log-interval', type=int, default=10, metavar='N',

help='how many batches to wait before logging training status')

parser.add_argument('--save-model', action='store_true', default=True,

help='For Saving the current Model')

args = parser.parse_args()

use_cuda = not args.no_cuda and torch.cuda.is_available()

torch.manual_seed(args.seed)

device = torch.device("cuda" if use_cuda else "cpu")

kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

train_loader = torch.utils.data.DataLoader(

datasets.FashionMNIST('./fashionmnist_data/', train=True, download=True,

transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])),

batch_size=args.batch_size, shuffle=True, **kwargs)

test_loader = torch.utils.data.DataLoader(

datasets.FashionMNIST('./fashionmnist_data/', train=False, transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])),

batch_size=args.test_batch_size, shuffle=True, **kwargs)

model = Net().to(device)

optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) #optimizer存储了所有parameters的引用,每个parameter都包含gradient

scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[12, 24], gamma=0.1) #学习率按区间更新

for epoch in range(1, args.epochs + 1):

train(args, model, device, train_loader, optimizer, epoch)

test(args, model, device, test_loader)

if (args.save_model):

torch.save(model.state_dict(), "mnist_fc.pt")

# 当.py文件直接运行时,该语句及以下的代码被执行,当.py被调用时,该语句及以下的代码不被执行

if __name__ == '__main__':

main()

python 02_fashion_mnist_fc.py --epochs=36

备注:数据集下载比较慢,第一次训练时,train_loader中download设置为True,后面再训练时改为False

F.log_softmax只是对输出结果做softmax后再取log

optimizer存储了所有parameters的引用,每个parameter都包含gradient

scheduler根据设置的epoch区间来调整学习率大小,调整率为gamma

训练过程中,随机选择1个batch的数据显示,如下:

训练结果如下,top1准确率为88%,网络参数大小为5.1M

2.2 CNN网络

FC网络参数量太大,而CNN网络考虑到图像的局部关联特性,使用卷积网络,参数量大小减小,设计如下CNN,代码全名为02_fashion_mnist_cnn.py

conv(1, 20, 5) + Relu + conv(20, 50, 5) + flatten + Relu + FC(10) + log_softmax

from __future__ import print_function # 从future版本导入print函数功能

import argparse # 加载处理命令行参数的库

import torch # 引入相关的包

import torch.nn as nn # 指定torch.nn别名nn

import torch.nn.functional as F # 引用神经网络常用函数包,不具有可学习的参数

import torch.optim as optim

from torchvision import datasets, transforms # 加载pytorch官方提供的dataset

class Net(nn.Module):

def __init__(self):

super(Net, self).__init__()

self.conv1 = nn.Conv2d(1, 20, 5, 1) # 1表示输入通道,20表示输出通道,5表示conv核大小,1表示conv步长

self.conv2 = nn.Conv2d(20, 50, 5, 1)

self.fc1 = nn.Linear(4 * 4 * 50, 500)

self.fc2 = nn.Linear(500, 10)

def forward(self, x):

x = F.relu(self.conv1(x))

x = F.max_pool2d(x, 2, 2)

x = F.relu(self.conv2(x))

x = F.max_pool2d(x, 2, 2)

x = x.view(-1, 4 * 4 * 50)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return F.log_softmax(x, dim=1)

def train(args, model, device, train_loader, optimizer, epoch):

model.train()

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)

optimizer.zero_grad()

output = model(data)

loss = F.nll_loss(output, target)

loss.backward()

optimizer.step()

if batch_idx % args.log_interval == 0:

print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

epoch, batch_idx * len(data), len(train_loader.dataset),

100. * batch_idx / len(train_loader), loss.item()))

def test(args, model, device, test_loader):

model.eval()

test_loss = 0

correct = 0

with torch.no_grad():

for data, target in test_loader:

data, target = data.to(device), target.to(device)

output = model(data)

test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss

pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability

correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(

test_loss, correct, len(test_loader.dataset),

100. * correct / len(test_loader.dataset)))

def main():

# Training settings

parser = argparse.ArgumentParser(description='PyTorch MNIST Example')

parser.add_argument('--batch-size', type=int, default=64, metavar='N',

help='input batch size for training (default: 64)')

parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',

help='input batch size for testing (default: 1000)')

parser.add_argument('--epochs', type=int, default=10, metavar='N',

help='number of epochs to train (default: 10)')

parser.add_argument('--lr', type=float, default=0.01, metavar='LR',

help='learning rate (default: 0.01)')

parser.add_argument('--momentum', type=float, default=0.5, metavar='M',

help='SGD momentum (default: 0.5)')

parser.add_argument('--no-cuda', action='store_true', default=False,

help='disables CUDA training')

parser.add_argument('--seed', type=int, default=1, metavar='S',

help='random seed (default: 1)')

parser.add_argument('--log-interval', type=int, default=10, metavar='N',

help='how many batches to wait before logging training status')

parser.add_argument('--save-model', action='store_true', default=False,

help='For Saving the current Model')

args = parser.parse_args()

use_cuda = not args.no_cuda and torch.cuda.is_available()

torch.manual_seed(args.seed)

device = torch.device("cuda" if use_cuda else "cpu")

kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

train_loader = torch.utils.data.DataLoader(

datasets.FashionMNIST('./fashionmnist_data/', train=True, download=False,

transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])),

batch_size=args.batch_size, shuffle=True, **kwargs)

test_loader = torch.utils.data.DataLoader(

datasets.FashionMNIST('./fashionmnist_data/', train=False, transform=transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307,), (0.3081,))

])),

batch_size=args.test_batch_size, shuffle=True, **kwargs)

model = Net().to(device)

optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[12, 24], gamma=0.1)

for epoch in range(1, args.epochs + 1):

train(args, model, device, train_loader, optimizer, epoch)

test(args, model, device, test_loader)

if (args.save_model):

torch.save(model.state_dict(), "mnist_cnn.pt")

# 当.py文件直接运行时,该语句及以下的代码被执行,当.py被调用时,该语句及以下的代码不被执行

if __name__ == '__main__':

main()

python 02_fashion_mnist_cnn.py --epochs=36

训练结果如下,top1准确率为91%。

3. references

你可能感兴趣的:(mnist,torch加载fashion)