Dijkstra算法求带权图的单源最短路径

Dijkstra算法求带权图的单源最短路径

Dijkstra可以用来求不带负权的带权图
Dijkstra的核心是松弛操作,具体松弛操作是什么,请看代码吧。
使用索引堆优化过的Dijkstra算法的时间复杂度为 O(Elog(V)) O ( E l o g ( V ) )

实现代码

package ShortestPath;

import java.util.Stack;
import java.util.Vector;

/**
 * @ Description: Dijkstra求有权图的最短路径
 * @ Date: Created in 13:01 2018/8/2
 * @ Author: Anthony_Duan
 */
public class Dijkstra<Weight extends Number & Comparable> {
     
    //图的引用
    private WeightedGraph G;
    //起始点
    private int s;
    //distTo[i]存储从起始点s到i的最短路径长度
    private Number[] distTo;
    // 标记数组,在算法运行过程中标记节点i是否被访问
    private boolean[] marked;

    //form[i]记录最短路径中到达i点的边是哪一条
    //可以用来恢复整个最短路径
    private Edge[] from;


    //构造函数,使用Dijkstra算法求最短路径
    public Dijkstra(WeightedGraph graph, int s) {

        //算法初始化
        G = graph;
        assert s >= 0 && s < G.V();
        this.s = s;
        distTo = new Number[G.V()];
        marked = new boolean[G.V()];
        from = new Edge[G.V()];
        for (int i = 0; i < G.V(); i++) {
            distTo[i] = 0.0;
            marked[i] = false;
            from[i] = null;
        }

        //使用索引堆记录当前找到的到达每个顶点的最短距离
        IndexMinHeap ipq = new IndexMinHeap<>(G.V());

        //对于其点s进行初始化
        distTo[s] = 0.0;
        from[s] = new Edge<>(s, s, (Weight) (Number) (0.0));
        //先把初始点放入堆中
        ipq.insert(s, (Weight) distTo[s]);

        marked[s] = true;

        while (!ipq.isEmpty()) {
            int v = ipq.extractMinIndex();

            // distTo[v]就是s到v的最短距离
            marked[v] = true;

            // 对v的所有相邻节点进行更新
            for (Object item :
                    G.adj(v)) {
                Edge e = (Edge) item;
                int w = e.other(v);
                //如果从s点到w点的最短路径还没有找到
                if (!marked[w]) {
                    // 如果w点以前没有访问过
                    //或者访问过但是通过当前v点到w点距离更短,则进行更新
                    if (from[w] == null || distTo[v].doubleValue() + e.wt().doubleValue() < distTo[w].doubleValue()) {
                        distTo[w] = distTo[v].doubleValue() + e.wt().doubleValue();
                        from[w] = e;
                        if (ipq.contain(w)) {
                            ipq.change(w, (Weight) distTo[w]);
                        }else {
                            ipq.insert(w,(Weight)distTo[w]);
                        }
                    }
                }
            }
        }
    }


    //返回从s点到w点的最短路径长度
    Number shortestPathTo(int w) {
        assert w >= 0 && w < G.V();
        assert hasPathTo(w);
        return distTo[w];
    }

    //判断从s点到w点是否联通
    boolean hasPathTo(int w) {
        assert w >= 0 && w < G.V();
        return marked[w];
    }

    //寻找从s到w的最短路径,将整个路径经过的边存放在vec中
    Vector> shortestPath(int w) {
        assert w >= 0 && w < G.V();
        assert hasPathTo(w);

        //通过from数组逆向查找从s 到w的路径,存放到栈中
        Stack> s = new Stack<>();
        Edge e = from[w];
        while (e.v() != this.s) {
            s.push(e);
            e = from[e.v()];
        }
        s.push(e);

        //从栈中一次取出元素,获得顺序的从s到w的路径
        Vector> res = new Vector<>();
        while (!s.isEmpty()) {
            e = s.pop();
            res.add(e);
        }
        return res;
    }

    //打印出从s到w点的路径
    void showPath(int w) {
        assert w >= 0 && w < G.V();
        assert hasPathTo(w);


        Vector> path = shortestPath(w);
        for (int i = 0; i < path.size(); i++) {
            System.out.print(path.elementAt(i).v() + " ->");
            if (i == path.size() - 1) {
                System.out.println(path.elementAt(i).w());
            }
        }
    }


    // 测试我们的Dijkstra最短路径算法
    public static void main(String[] args) {

        String filename = "/Users/duanjiaxing/IdeaProjects/Algorithm/src/ShortestPath/testG1.txt";
        int V = 5;

        SparseWeightedGraph g = new SparseWeightedGraph(V, true);
        // Dijkstra最短路径算法同样适用于有向图
        //SparseGraph g = SparseGraph(V, false);
        ReadWeightedGraph readGraph = new ReadWeightedGraph(g,filename);

        System.out.println("Test Dijkstra:\n");
        Dijkstra dij = new Dijkstra(g,0);
        for( int i = 1 ; i < V ; i ++ ){
            if(dij.hasPathTo(i)) {
                System.out.println("Shortest Path to " + i + " : " + dij.shortestPathTo(i));
                dij.showPath(i);
            }
            else {
                System.out.println("No Path to " + i );
            }

            System.out.println("----------");
        }

    }
}

你可能感兴趣的:(数据结构与算法,Dijkstra,最短路径)