与ln的指数转化公式_初中数学公式总结

与ln的指数转化公式_初中数学公式总结_第1张图片

1.三角函数公式:

两角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB ?

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA) ?

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=2tanA/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A)

诱导公式:sin(-α) = -sinα

cos(-α) = cosα

sin(π/2-α) = cosα

cos(π/2-α) = sinα

sin(π/2+α) = cosα

cos(π/2+α) = -sinα

sin(π-α) = sinα

cos(π-α) = -cosα

sin(π+α) = -sinα

cos(π+α) = -cosα

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

2.乘法原理:N=N1·N2·......·Nn

3.加法原理:M=M1+M2+......+Mm

4.排列组合公式(可以去查)注意:全排列公式:当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n!

椭圆的标准方程有两种,取决于焦点所在的坐标轴:

1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)

2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b>0)

2.数列极限:

设是一数列,如果存在常数a,当n无限增大时,an无限接近(或趋近)于a,则称数列收敛,a称为数列的极限,或称数列收敛于a,记为liman=a。或:an→a,当n→∞。

3.极限的运算法则(或称有关公式):

lim(f(x)+g(x))=limf(x)+limg(x)

lim(f(x)-g(x))=limf(x)-limg(x)

lim(f(x)*g(x))=limf(x)*limg(x)

lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 )

lim(f(x))^n=(limf(x))^n

以上limf(x) limg(x)都存在时才成立

lim(1+1/x)^x =e

x→∞

无穷大与无穷小:

一个数列(极限)无限趋近于0,它就是一个无穷小数列(极限)。

无穷大数列和无穷小数列成倒数。

两个重要极限:

1、lim sin(x)/x =1 ,x→0

2、lim (1 + 1/x)^x =e ,x→∞ (e≈2.7182818...,无理数)

4.如果你在大学要学数学,则掌握微积分公式:

① C'=0(C为常数函数);

② (x^n)'= nx^(n-1) (n∈Q);

③ (sinx)' = cosx;

④ (cosx)' = - sinx;

⑤ (e^x)' = e^x;

⑥ (a^x)' = (a^x) * Ina (ln为自然对数)

⑦ (Inx)' = 1/x(ln为自然对数)

⑧ (logax)' =(1/x)*logae,(a>0且a不等于1)

上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。

(3)导数的四则运算法则:

①(u±v)'=u'±v'

②(uv)'=u'v+uv'

③(u/v)'=(u'v-uv')/ v^2

对数的性质和运算法则loga(MN)=logaM+logaNlogaMn=nlogaM(n∈R) 指数函数 对数函数

(1)y=ax(a>0,a≠1)叫指数函数

(2)x∈R,y>0

图象经过(0,1)

a>1时,x>0,y>1;x<0,0<y<1

0<a<1时,x>0,0<y<1;x<0,y>1

a> 1时,y=ax是增函数

0<a<1时,y=ax是减函数 (1)y=logax(a>0,a≠1)叫对数函数

(2)x>0,y∈R

图象经过(1,0)

a>1时,x>1,y>0;0<x<1,y<0

0<a<1时,x>1,y<0;0<x<1,y>0

a>1时,y=logax是增函数

0<a<1时,y=logax是减函数

指数方程和对数方程

基本型

logaf(x)=b f(x)=ab(a>0,a≠1)

同底型 

logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)

换元型 f(ax)=0或f (logax)=0

2、数列

数列的基本概念 等差数列

(1)数列的通项公式an=f(n)

(2)数列的递推公式

(3)数列的通项公式与前n项和的关系an+1-an=d

an=a1+(n-1)d

a,A,b成等差 2A=a+b

m+n=k+l am+an=ak+al

等比数列 常用求和公式

an=a1qn_1

a,G,b成等比 G2=ab

m+n=k+l aman=akal 3、不等式

不等式的基本性质 重要不等式

a>b b<a

a>b,b>c a>c

a>b a+c>b+c

a+b>c a>c-b

a>b,c>d a+c>b+d

a>b,c>0 ac>bc

a>b,c<0 ac<bc

a>b>0,c>d>0 ac<bd

a>b>0 dn>bn(n∈Z,n>1)

a>b>0 > (n∈Z,n>1)

(a-b)2≥0

a,b∈R a2+b2≥2ab |a|-|b|≤|a±b|≤|a|+|b|

证明不等式的基本方法

比较法

(1)要证明不等式a>b(或a<b),只需证明

a-b>0(或a-b<0=即可

(2)若b>0,要证a>b,只需证明 ,

要证a<b,只需证明

综合法 综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

分析法 分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”

4、复数

代数形式 三角形式

a+bi=c+di a=c,b=d(a+bi)+(c+di)=(a+c)+(b+d)i

(a+bi)-(c+di)=(a-c)+(b-d)i

(a+bi)(c+di )=(ac-bd)+(bc+ad)i

a+bi=r(cosθ+isinθ)

r1=(cosθ1+isinθ1)r2(cosθ2+isinθ2)

=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]

[r(cosθ+sinθ)]n=rn(cosnθ+isinnθ) k=0,1,……,n-1

5、排列、组合与二项式定理

排列、组合 二项式定理 (1)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等

(2)如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大

6、复数

模、辐角、共轭复数 几何意义

|z1z2|=|z1||z2|(1)复数的加、减法的几何意义即为向量的合成和分解(平行四边形法则或三角形法则)

(2)复数的乘法、除法、乘方的几何意义可由其三角形式运算而得到。

(3)复数的n次方根的几何意义是n个n次方根所对应的点均匀的分布在以原点为圆心,以 为半径的圆周上。

(二)三角函数

弧度制 同角关系

1°= 1rad

弧长公式l=|α|r Sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=cos2α

你可能感兴趣的:(与ln的指数转化公式)