目录
1、参数组成
2、命令行参数
3、配置文件
3.1、配置文件结构
3.2、常见问题
以fcn_r50-d8_512x512_20k_voc12.py为例。fcn_r50-d8_512x512_20k_voc12.py由fcn_r50-d8_512x512_20k_voc12aug.py修改而来。修改数据集为voc_aug为voc,其它一致。
tools/train.py中main函数,查看训练参数来源三个部分:
1)命令行参数;
2)配置文件;
3)环境变量。
关键代码段如下:
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.options is not None:
cfg.merge_from_dict(args.options)
...
env_info_dict = collect_env()
具体的命令行参数解析,可参考:https://blog.csdn.net/weixin_34910922/article/details/106677752
命令行参数的意义,可参考上一篇,模型训练和推理。
这里对调用方式进行说明:
import argparse
from mmcv.utils import Config, DictAction, get_git_hash
def parse_args():
parser = argparse.ArgumentParser(description='Train a segmentor')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--load-from', help='the checkpoint file to load weights from')
parser.add_argument(
'--resume-from', help='the checkpoint file to resume from')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument(
'--gpus',
type=int,
help='number of gpus to use '
'(only applicable to non-distributed training)')
group_gpus.add_argument(
'--gpu-ids',
type=int,
nargs='+',
help='ids of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--options', nargs='+', action=DictAction, help='custom options')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
1)config参数设置
调用方式:python tools/train.py configs/fcn/fcn_r50-d8_512x512_20k_voc12.py
args结果:
args: Namespace(
config='configs/fcn/fcn_r50-d8_512x512_20k_voc12.py',
deterministic=False,
gpu_ids=None,
gpus=None,
launcher='none',
load_from=None,
local_rank=0,
no_validate=False,
options=None,
resume_from=None,
seed=None,
work_dir=None)
2)--param设置
调用方式,--work_dir="work_dir":
python tools/train.py configs/fcn/fcn_r50-d8_512x512_20k_voc12.py --work_dir="work_dir"
3)action='store_true'设置
调用方式,--no-validate
4)nargs='+'设置
如int型gpus设置, --gpu 0 1 2; 字典型options设置,--options root_dir="data"
调用示例:
python tools/train.py configs/fcn/fcn_r50-d8_512x512_20k_voc12.py --work-dir="work_dir" --no-validate --gpu-ids 0 1 2 --options root_dir="data"
调用结果:
args: Namespace(
config='configs/fcn/fcn_r50-d8_512x512_20k_voc12.py',
deterministic=False,
gpu_ids=[0, 1, 2],
gpus=None,
launcher='none',
load_from=None,
local_rank=0,
no_validate=True,
options={'root_dir': 'data'},
resume_from=None,
seed=None,
work_dir='work_dir')
将模块化和继承设计合并到我们的配置系统中,方便进行各种实验。若希望检查配置文件,则可以运行以查看完整的配置。可以通过查看更新的配置。
python tools/print_config.py /PATH/TO/CONFIG--options xxx.yyy=zzz
实例测试:
python tools/print_config.py configs/fcn/fcn_r50-d8_512x512_20k_voc12.py
结果:
Config:
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained=None,
backbone=dict(
type='ResNetV1c',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
dilations=(1, 1, 2, 4),
strides=(1, 2, 1, 1),
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=False,
style='pytorch',
contract_dilation=True),
decode_head=dict(
type='FCNHead',
in_channels=2048,
in_index=3,
channels=512,
num_convs=2,
concat_input=True,
dropout_ratio=0.1,
num_classes=21,
norm_cfg=dict(type='BN', requires_grad=True),
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=dict(
type='FCNHead',
in_channels=1024,
in_index=2,
channels=256,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=21,
norm_cfg=dict(type='BN', requires_grad=True),
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
train_cfg=dict(),
test_cfg=dict(mode='whole'))
dataset_type = 'PascalVOCDataset'
data_root = 'F:\dataset\voc2012'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 512),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type='PascalVOCDataset',
data_root='F:\dataset\voc2012',
img_dir='JPEGImages',
ann_dir='SegmentationClass',
split='ImageSets/Segmentation/train.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]),
val=dict(
type='PascalVOCDataset',
data_root='F:\dataset\voc2012',
img_dir='JPEGImages',
ann_dir='SegmentationClass',
split='ImageSets/Segmentation/val.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 512),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='PascalVOCDataset',
data_root='F:\dataset\voc2012',
img_dir='JPEGImages',
ann_dir='SegmentationClass',
split='ImageSets/Segmentation/val.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 512),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
log_config = dict(
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
cudnn_benchmark = True
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optimizer_config = dict()
lr_config = dict(policy='poly', power=0.9, min_lr=0.0001, by_epoch=False)
runner = dict(type='IterBasedRunner', max_iters=20000)
checkpoint_config = dict(by_epoch=False, interval=2000)
evaluation = dict(interval=2000, metric='mIoU')
打开fcn_r50-d8_512x512_20k_voc12.py文件。其内容如下:
_base_ = [
'../_base_/models/fcn_r50-d8.py', # 模型配置
'../_base_/datasets/pascal_voc12.py', # 数据集配置
'../_base_/default_runtime.py', # 运行时配置
'../_base_/schedules/schedule_20k.py' # 计划任务配置
]
model = dict(
decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
组件_base_为基础配置,文件内其它参数会覆盖基础配置中的内容。配置文件加载后,会将基础配置中文件参数与文件内其它参数合并为一个完整的cfg。合并后的cfg如上一节中python tools/print_config.py config打印内容。
1)配置文件命名格式
{model}_{backbone}_[misc]_[gpu x batch_per_gpu]_{resolution}_{schedule}_{dataset}
{xxx}是必填字段,[yyy]是可选字段。
2)_delete_=True删除该字典集中字段。