- 基于OpenCV的银行卡识别
Yang了个羊
OpenCVopencv人工智能计算机视觉
一、设计思路1、预处理银行卡号序列模版,对其进行一系列形态学操作,继而进行轮廓识别,构建与各个轮廓所对应的数字元组。2、对将要识别的银行卡进行灰度处理、二值化、阈值处理,sobel算子边缘检测等预处理,再通过模版匹配方法找出与已知轮廓高度符合的数字。二、代码复现预操作:自定义一个cv_show函数,便于后来的图像展示。#绘图展示defcv_show(name,img):cv2.imshow(nam
- OpenCV边缘填充方式详解
慕婉0307
opencv基础opencv计算机视觉人工智能
一、边缘填充概述在图像处理中,边缘填充(BorderPadding)是一项基础而重要的技术,特别是在进行卷积操作(如滤波、边缘检测等)时,处理图像边缘像素需要用到周围的像素值。由于图像边缘的像素没有完整的邻域,因此需要通过某种方式对图像边界进行扩展。边缘填充的主要应用场景包括:图像滤波(如高斯滤波、中值滤波等)卷积神经网络(CNN)中的卷积层形态学操作(如膨胀、腐蚀)图像特征提取二、OpenCV中
- C#版Halcon:HalconDotNet最详细最全面教程(万字详细总结)
0仰望星空007
C#计算机视觉HalconHalconDotNet
文章目录第一部分:Halcon基础1.Halcon简介Halcon的安装和配置2.Halcon界面和工具图像显示窗口的使用3.图像处理基础图像的表示和存储图像的基本操作4.图像预处理图像增强技术图像去噪方法图像二值化第二部分:Halcon进阶5.形态学操作腐蚀和膨胀开运算和闭运算形态学梯度6.特征提取边缘检测角点检测区域特征第三部分:Halcon高级应用7.模板匹配基于形状的模板匹配基于灰度的模板
- C#Halcon从零开发_Day12_轮廓边缘处理
仙贝大饼
C#联合Halcon从零编程人工智能计算机视觉Halcon机器学习c#轮廓处理
引言之前是依靠卡尺来获取直线,也可以通过xld轮廓来截取直线段dev_get_window(WindowHandle)read_image(Image,'C:/Users/10314/Desktop/pic1.png')一、边缘提取*Edges:提取的亚像素边缘轮廓(XLD格式),包含边缘点的坐标和方向信息*'canny'边缘检测滤波器的类型,决定边缘检测的灵敏度和方向*'lanser2':基于二
- OpenCV C++ 边缘检测与图像分割
achene_ql
opencvc++计算机视觉人工智能
一、边缘检测在数字图像处理领域,边缘检测是一项至关重要的基础技术。它如同为图像赋予“骨架”,帮助计算机快速识别图像中的物体轮廓、形状与结构,广泛应用于目标识别、图像分割、图像配准等多个领域。1.1概念边缘检测的核心目标是找出图像中像素灰度发生剧烈变化的区域边界。这些边界往往对应着图像中物体的轮廓、不同物体的交界处或纹理变化明显的地方。通过提取这些边缘信息,可以有效减少图像数据量,同时保留图像中最关
- 视觉感知BEV算法学习路线
LQS2020
计算机视觉
学习视觉感知BEV(Bird’sEyeView)算法涉及多个方面的知识和技能。以下是一个系统化的学习路线图,可以帮助你逐步掌握BEV算法。1.基础知识学习1.1计算机视觉基础图像处理:了解图像的基本操作,如滤波、边缘检测、特征提取。推荐书籍:《DigitalImageProcessing》byRafaelC.GonzalezandRichardE.Woods特征提取和描述:学习SIFT、SURF、
- 13、动态边缘检测与人机交互:迈向更智能的未来
csp1223
机器人世界的探索与创新动态边缘检测人机交互视觉系统
动态边缘检测与人机交互:迈向更智能的未来1.引言随着机器人技术的快速发展,人机交互变得越来越重要。机器人不仅需要具备感知周围环境的能力,还需要能够理解和响应人类的行为。视觉系统是机器人与外界交互的关键组成部分,尤其是在边缘检测方面,它是衡量视觉系统性能的重要指标之一。传统的边缘检测方法大多基于静态掩码,这种方法虽然有效但在处理复杂环境时表现有限。近年来,研究人员借鉴生物学原理,尤其是视网膜的功能,
- C#Halcon从零开发_Day10_直线拟合
仙贝大饼
C#联合Halcon从零编程算法Halconc#机器视觉直线拟合
一、引言直线拟合应用场景:产品边缘检测:检测产品的直线边缘(如金属板、塑料件的边缘),判断是否符合设计规格。缺陷检测:通过拟合直线检测边缘的直线度,识别是否存在弯曲、断裂或毛刺等缺陷。长度、宽度测量:通过拟合直线计算物体的长度、宽度等几何尺寸。二、具体实施:dev_get_window(WindowHandle)read_image(Image2,'C:/Users/10314/Desktop/r
- Matlab | matlab中的图像处理详解
北斗猿
程序语言设计(C语言C++MatlabPython等)matlab算法图像处理
MATLAB图像处理详解这里写目录标题图像处理MATLAB图像处理详解一、图像基础操作1.图像读写与显示2.图像信息获取3.图像类型转换二、图像增强技术1.对比度调整2.去噪处理3.锐化处理三、图像变换1.几何变换2.频域变换四、图像分割1.阈值分割2.边缘检测3.区域分割五、形态学操作1.基本操作2.高级形态学六、特征提取与分析1.区域属性2.纹理特征七、彩色图像处理1.色彩空间转换2.彩色分割
- 【Python与生活】如何实现一个条形码检测算法?
小米玄戒Andrew
Python与生活python生活算法深度学习人工智能pytorch
条形码识别是计算机视觉中的常见任务,广泛应用于零售、物流和库存管理等领域。下面我将介绍如何使用Python和深度学习框架实现一个高效的条形码识别解决方案。框架选择与介绍在实现条形码识别系统时,我们可以选择以下框架和库:1.OpenCVOpenCV是计算机视觉领域的基础库,提供了丰富的图像处理功能,如滤波、边缘检测、阈值处理等,是预处理阶段的核心工具。2.PyTorch/TensorFlow作为主流
- matlab图像边缘检测——sobel算子
安心不心安
数字图像处理matlab计算机视觉开发语言
1.sobel算子概述Sobel算子是一种常用的边缘检测算子,它可以通过计算像素点的梯度来检测图像中的边缘。该算子基于图像上某一点周围的像素值变化情况,通过卷积运算来计算水平方向和垂直方向上的梯度。Sobel算子使用两个3x3的模板进行卷积操作,分别对应水平方向和垂直方向的梯度计算。这两个模板分别称为Gx和Gy。水平方向模板Gx:-101-202-101垂直方向模板Gy:121000-1-2-1通
- opencv中常用cuda函数总结
Ring__Rain
Opencvcuda
bitwise_and()bitwise_not()bitwise_or()bitwise_xor()compare()divide():除exp()log()max()min()multiply()threshold():二值化,但要指定设定阈值blendLinear():两幅图片的线形混合calcHist()createBoxFilter():创建一个规范化的2D框过滤器canny边缘检测cr
- 使用Kotlin实现滑块验证码缺口识别的方法及实现步骤
rrrrroottttttt
kotlin开发语言android
滑块验证码是一种用于网站安全验证的常见方式,但攻击者往往能够通过识别滑块验证码的缺口来绕过验证。本文将介绍如何使用Kotlin语言结合图像处理技术,实现对滑块验证码缺口的自动识别,从而提高网站的安全性。正文:步骤一:图像处理首先,我们需要获取滑块验证码的图像,并对其进行预处理。预处理包括图像灰度化、边缘检测等操作,以便后续分析滑块位置和缺口位置。kotlin//图像预处理funpreprocess
- 图像的形态学操作
Suniaun原型机
OpenCV入门opencv计算机视觉c++
OpenCV中的形态学操作图像的形态学操作(MorphologicalOperations)是一种基于图像形状的处理方法,通常用于二值图像的分析和处理。形态学操作通过对图像中各个区域的结构进行改变或分析,来提取或增强图像中的形态特征(如边缘、物体、空洞等)。这些操作在许多计算机视觉任务中非常常见,例如噪声去除、边缘检测、图像分割、物体识别等。它们主要基于图像的几何形状进行分析,通过设置形态学核(通
- Python OpenCV 4.10 库详解
yz123lucky
pythonopencv开发语言
PythonOpenCV4.10库详解文档核心模块覆盖:Core模块:基本数据结构、矩阵操作、数学运算ImgProc模块:图像处理的核心功能,包括颜色转换、几何变换、滤波、边缘检测VideoIO模块:视频和摄像头操作HighGUI模块:用户界面功能,窗口管理、事件处理Features2D模块:特征检测和匹配(SIFT、ORB等)ObjDetect模块:目标检测算法DNN模块:深度学习模型集成Vid
- 图像基础算法学习笔记
jerry201108
视觉基础知识学习笔记计算机视觉
目录概要一、图像采集二、图像标注四、图像几何变换五、图像边缘检测Sobel算子Scharrt算子Laplacian算子Canny边缘检测六、形态学转换十三、图像去噪概要参考书籍:《机器视觉与人工智能应用开发技术》廖建尚,钟君柳出版时间:2024-02-01图像采集图像标注:绘制直线、矩阵、圆形、椭圆和多边形图像灰度转换:灰度化、二值化等图像转换方法图像几何变换:图像旋转、图像镜像、图像缩放、图像透
- Opencv4 c++ 自用笔记 04 图像滤波与边缘检测
BandieraRosa
opencvc++笔记计算机视觉opencv
图像滤波与边缘检测直接采集到的图像可能带有噪声的干扰,因此去除噪声是图像预处理中十分重要的一步。图像滤波是图像噪声去除的重要方式。图像卷积卷积操作广泛应用于信号处理领域,而图像本质上可以视为一种二维信号数据。卷积过程可以理解为一个卷积模板(卷积核)在图像上逐像素移动,对模板覆盖区域内的像素值进行加权求和,计算结果作为模板中心位置的输出值。为避免卷积输出值超出数据表示范围,通常对卷积模板进行归一化处
- HDR图像合成及边缘检测(opencv 和 c++)
Reicher
计算机视觉c++开发语言visualstudio图像处理
本文主要是记录个人的开发过程,及过程中遇到的问题及解决方法,对个人工作的一个总结。一、HDR图像合成由不同曝光设置拍摄的多张图像创建高动态范围HighDynamicRange(HDR)图像。使用的是c++和OpenCV4.x。主程序主要参考对象:使用OpenCV进行高动态范围(HDR)成像1.捕获不同曝光度的多张图像使用相机拍摄三张曝光时间不同的图像曝光不足的图像:该图像比正确曝光的图像更暗。目标
- OpenCV CUDA模块图像处理------创建CUDA加速的Canny边缘检测器对象createCannyEdgeDetector()
村北头的码农
OpenCVopencv图像处理人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该函数用于创建一个CUDA加速的Canny边缘检测器对象(CannyEdgeDetector),可以在GPU上高效执行Canny边缘检测算法。它返回的是一个智能指针Ptr,可以通过这个指针调用.detect()方法来对图像进行边缘检测。Canny是一种经典的多阶段
- 【图像处理入门】4. 图像增强技术——对比度与亮度的魔法调节
小米玄戒Andrew
图像处理:从入门到专家图像处理算法计算机视觉模式识别几何变换图像增强
摘要图像增强是改善图像视觉效果的核心技术。本文将详解两种基础增强方法:通过直方图均衡化拉伸对比度,以及利用伽马校正调整非线性亮度。结合OpenCV代码实战,学会处理灰度图与彩色图的不同增强策略,理解为何彩色图像需在YUV空间操作亮度通道,为后续滤波与边缘检测奠定预处理基础。一、图像增强:让模糊图像「重获新生」为什么需要图像增强?改善视觉效果:让低对比度图像更清晰(如老照片修复)提升后续处理效果:增
- OpenCV 边缘检测(Edge Detection)cv2.Canny
二分掌柜的
#Pythonopencvpython
OpenCV边缘检测(EdgeDetection)cv2.Cannyflyfishimportcv2video_path='input_video.mp4'cap=cv2.VideoCapture(video_path)whileTrue:ret,frame=cap.read()ifnotret:break#视频结束#转灰度frame_gray=cv2.cvtColor(frame,cv2.COL
- OpenCV---Canny边缘检测
MzKyle
计算机视觉计算机视觉人工智能
一、基本概念与核心作用Canny边缘检测是计算机视觉中最经典的边缘检测算法之一,由JohnCanny于1986年提出。其核心目标是在噪声图像中提取精确、单像素宽、连续的边缘,广泛应用于:目标检测预处理(如Robomaster中灯条、装甲板的边缘提取)。轮廓分析(轮廓检测的前置步骤)。图像分割(通过边缘定位目标边界)。特征提取(如边缘方向直方图HOG)。与其他边缘检测算法的对比:算法优势劣势Cann
- 15-OpenCVSharp —- Cv2.GaussianBlur()函数功能(高斯滤波)详解
X-Vision
#《OpenCV算子系列》计算机视觉opencv人工智能图像处理算法
OpenCV算子专栏OpenCVSharp—Cv2.GaussianBlur()函数详解Cv2.GaussianBlur()是OpenCVSharp中用于图像处理的高斯模糊函数。它的核心功能是通过高斯卷积滤波对图像进行平滑处理,减少噪声,常用于去噪、图像预处理以及边缘检测等任务。1.核心原理与公式高斯模糊的核心原理是对图像进行卷积操作,其中卷积核是基于高斯函数生成的。高斯函数公式:二维高斯函数的数
- C/C++的OpenCV 进行图像梯度提取
whoarethenext
opencvc语言c++
使用C++/OpenCV进行图像梯度提取图像梯度表示图像中像素强度的变化率和方向。它是图像分析中的一个基本概念,广泛应用于边缘检测、特征提取和物体识别等任务。OpenCV提供了多种计算图像梯度的函数。本文将介绍几种常用的梯度算子及其在C++/OpenCV中的实现。预备知识在开始之前,请确保您已经安装了OpenCV,并且您的C++开发环境已经配置好可以链接OpenCV库。通常,我们需要包含以下头文件
- OpenCV CUDA 模块图像过滤-----创建一个计算图像导数的滤波器函数createDerivFilter()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::cuda::createDerivFilter是OpenCVCUDA模块中的一个工厂函数,用于创建一个计算图像导数的滤波器。这个滤波器可以用来计算图像在x方向和y方向上的任意阶导数。它特别适用于边缘检测、特征提取等计算机视觉任务。函数原型cv::Ptrcv
- 多源图像配准算法
Tofu Intelligence
图像处理相关算法分享算法
热红外与可见光图像的配准(Registration)方法主要可以归纳为以下几类:基于边缘特征的图像配准方法:原理:该方法首先将在同一场景下的可见光图像和红外热像两张图像转换为相同分辨率(即相同尺寸规格)的图像。然后,利用边缘检测、角点检测等函数找出关键点,完成对处理后的两张图像进行点到点的配准。特点:实时性好、鲁棒性高,能有效抵御干扰点。基于特征信息的配准方法:原理:该算法只需要提取待配准图像中的
- 工业视觉高精度测量利器——Halcon卡尺工具深度解析
Ro小陌
Halcon计算机视觉人工智能视觉检测
Halcon中的卡尺工具(CaliperTool)是工业视觉中用于高精度边缘检测和几何测量的重要功能,尤其在尺寸测量、定位和对象分析中广泛应用。以下从原理、实现到优化的深度解析:1.卡尺工具实现原理(步骤分解)步骤原理描述关键技术1.ROI定义通过几何形状(矩形/圆弧)限制检测区域,排除背景干扰。几何变换、坐标映射2.边缘扫描沿ROI垂直方向逐行/列扫描像素,计算灰度梯度(一阶导数)。高斯滤波、梯
- 深度学习相比传统机器学习的优势
杰瑞学AI
AI/AGIComputerknowledgeNLP/LLMs深度学习机器学习人工智能大数据图像处理AI-native
深度学习相比传统机器学习具有显著优势,主要体现在以下几个方面:1.特征工程的自动化传统机器学习:依赖人工设计特征(FeatureEngineering),需要领域专家从原始数据中提取关键特征(如边缘检测、纹理统计等)。这一过程耗时且容易引入偏差。深度学习:通过多层神经网络自动学习数据的多层次抽象表示。例如:图像识别:底层网络捕捉边缘、颜色,高层网络组合成物体部件(如车轮、人脸)。自然语言处理(NL
- 助力移动机器人下游任务!Mobile-Seed:联合语义分割和边缘检测
3D视觉工坊
3D视觉从入门到精通计算机视觉
点击下方卡片,关注「3D视觉工坊」公众号选择星标,干货第一时间送达来源:3D视觉工坊添加小助理:dddvision,备注:语义分割,拉你入群。文末附行业细分群0.写在前面移动机器人经常需要定位语义目标和目标边缘,但大多数研究只集中在语义分割的部署上。今天笔者为大家推荐一篇开源工作,实现了语义分割和边缘检测的联合学习。下面一起来阅读一下这项工作~1.论文信息标题:Mobile-Seed:JointS
- OpenCv高阶(八)——摄像头调用、摄像头OCR
闭月之泪舞
计算机视觉opencvocr人工智能
文章目录前言一、摄像头调用通用方法1、导入必要的库2、创建摄像头接口二、摄像头OCR1.引入库2、定义函数(1)定义显示opencv显示函数(2)保持宽高比的缩放函数(3)坐标点排序函数(4)四点透视变换实现3、读取摄像头显示摄像头画面并做灰度处理4、做中值滤波并使用canny边缘检测5、轮廓检测6、遍历轮廓7、透视变换完整代码展示总结应用文档处理车牌识别身份证识别场景文字识别前言摄像头OCR是指
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》