Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
pyecharts版本v0.5.x 和 v1 间不兼容,v1 是一个全新的版本,语法也有很大不同。
安装pyecharts
pip install pyecharts -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
import pyecharts
print(pyecharts.__version__) # 查看当前pyecharts版本
安装相关的地图扩展包
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-countries-pypkg # 全球国家地图
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-provinces-pypkg # 中国省级地图
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-cities-pypkg # 中国市级地图
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-counties-pypkg # 中国县区级地图
利用 Starbucks.csv 中的数据,首先计算每个国家(Country)对应的门店数量,然后使用世界地图可视化展示星巴克门面店在全球的数量分布。
# -*- coding: UTF-8 -*-
"""
@File :demo1.py
@Author :叶庭云
@CSDN :https://yetingyun.blog.csdn.net/
"""
import pandas as pd
from pyecharts.charts import Map
from pyecharts import options as opts
from pyecharts.globals import ThemeType, CurrentConfig
CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'
# pandas读取csv文件里的数据
df = pd.read_csv("Starbucks.csv")['Country']
# 统计各个地区星巴克门店数量
data = df.value_counts()
datas = [(i, int(j)) for i, j in zip(data.index, data.values)]
# 实例化一个Map对象
map_ = Map(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION))
# 世界地图
map_.add("门店数量", data_pair=datas, maptype="world")
map_.set_series_opts(label_opts=opts.LabelOpts(is_show=False)) # 不显示label
map_.set_global_opts(
title_opts=opts.TitleOpts(title="星巴克门店数量在全球分布", pos_left='40%', pos_top='10'), # 调整title位置
legend_opts=opts.LegendOpts(is_show=False),
visualmap_opts=opts.VisualMapOpts(max_=13608, min_=1, is_piecewise=True,
pieces=[{
"max": 9, "min": 1, "label": "1-9", "color": "#00FFFF"}, # 分段 添加图例注释和颜色
{
"max": 99, "min": 10, "label": "10-99", "color": "#A52A2A"},
{
"max": 499, "min": 100, "label": "100-499", "color": "#0000FF "},
{
"max": 999, "min": 500, "label": "500-999", "color": "#FF00FF"},
{
"max": 2000, "min": 1000, "label": "1000-2000", "color": "#228B22"},
{
"max": 3000, "min": 2000, "label": "2000-3000", "color": "#FF0000"},
{
"max": 20000, "min": 10000, "label": ">=10000", "color": "#FFD700"}
])
)
# 渲染在网页上
map_.render('星巴克门店在全球的分布.html')
运行效果如下:
利用 china.csv 中的数据,首先计算每个城市(City)对应的门店数量,然后使用 pyecharts 包内 Geo 模块绘制星巴克门面店在中国各城市的数量分布的涟漪散点地图。
import pandas as pd
from pyecharts.globals import ThemeType, CurrentConfig, GeoType
from pyecharts import options as opts
from pyecharts.charts import Geo
CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'
# pandas读取csv文件数据
df = pd.read_csv("china.csv")['City']
data = df.value_counts()
datas = [(i, int(j)) for i, j in zip(data.index, data.values)]
print(datas)
geo = Geo(init_opts=opts.InitOpts(width='1000px', height='600px', theme=ThemeType.DARK))
geo.add_schema(maptype='china', label_opts=opts.LabelOpts(is_show=True)) # 显示label 省名
geo.add('门店数量', data_pair=datas, type_=GeoType.EFFECT_SCATTER, symbol_size=8)
geo.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
geo.set_global_opts(title_opts=opts.TitleOpts(title='星巴克门店在中国的分布'),
visualmap_opts=opts.VisualMapOpts(max_=550, is_piecewise=True,
pieces=[{
"max": 50, "min": 0, "label": "0-50", "color": "#708090"}, # 分段 添加图例注释 和颜色
{
"max": 100, "min": 51, "label": "51-100", "color": "#00FFFF"},
{
"max": 200, "min": 101, "label": "101-200", "color": "#00008B"},
{
"max": 300, "min": 201, "label": "201-300", "color": "#8B008B"},
{
"max": 600, "min": 500, "label": "500-600", "color": "#FF0000"},
])
)
geo.render("星巴克门店在中国的分布.html")
运行效果如下:
# -*- coding: UTF-8 -*-
"""
@File :demo3.py
@Author :叶庭云
@CSDN :https://yetingyun.blog.csdn.net/
"""
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType, CurrentConfig, ThemeType
CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'
# 链式调用
c = (
Geo()
.add_schema(
maptype="china",
itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),
label_opts=opts.LabelOpts(is_show=True)
)
.add(
"",
[("广州", 55), ("北京", 66), ("杭州", 77), ("重庆", 88), ('成都', 100), ('海口', 80)],
type_=ChartType.EFFECT_SCATTER,
color="white",
)
.add(
"",
[("广州", "上海"), ("广州", "北京"), ("广州", "杭州"), ("广州", "重庆"),
('成都', '海口'), ('海口', '北京'), ('海口', '重庆'), ('重庆', '上海')
],
type_=ChartType.LINES,
effect_opts=opts.EffectOpts(
symbol=SymbolType.ARROW, symbol_size=6, color="blue" # 轨迹线蓝色
),
linestyle_opts=opts.LineStyleOpts(curve=0.2), # 轨迹线弯曲度
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="动态轨迹图"))
.render("geo_lines_background.html")
)
运行效果如下:
# -*- coding: UTF-8 -*-
"""
@File :demo4.py
@Author :叶庭云
@CSDN :https://yetingyun.blog.csdn.net/
"""
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.faker import Faker
from pyecharts.globals import GeoType, CurrentConfig
CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'
c = (
Geo()
.add_schema(maptype="广东", label_opts=opts.LabelOpts(is_show=True))
.add(
"热力图",
[list(z) for z in zip(Faker.guangdong_city, Faker.values())],
type_=GeoType.HEATMAP,
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=True))
.set_global_opts(
visualmap_opts=opts.VisualMapOpts(), title_opts=opts.TitleOpts(title="Geo-广东地图")
)
.render("geo_guangdong.html")
)
运行效果如下:
数据来源于美团网成都地区酒店信息,利用其中酒店的经纬度数据,批量添加在地图上可视化。
# -*- coding: UTF-8 -*-
"""
@File :demo5.py
@Author :叶庭云
@CSDN :https://yetingyun.blog.csdn.net/
"""
import pandas as pd
from pyecharts.charts import Geo
from pyecharts import options as opts
from pyecharts.globals import GeoType, CurrentConfig, ThemeType
CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/'
# 读取Excel数据 数据来源美团网酒店信息
df = pd.read_excel("hotel.xlsx")
# 获取 地点 经纬度信息
geo_sight_coord = {
df.iloc[i]['酒店地址']: [df.iloc[i]['经度'], df.iloc[i]['纬度']] for i in range(len(df))}
data = [(df['酒店地址'][j], f"{int(df['最低价'][j])}元(最低价)") for j in range(len(df))]
# print(data)
# print(geo_sight_coord)
# 实例化Geo对象 导入成都地图
g = Geo(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION, width="1000px", height="600px"))
g.add_schema(maptype="成都")
for k, v in list(geo_sight_coord.items()):
# 添加地址、经纬度数据
g.add_coordinate(k, v[0], v[1])
# 生成涟漪散点图
g.add("", data_pair=data, type_=GeoType.EFFECT_SCATTER, symbol_size=6)
g.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
g.set_global_opts(title_opts=opts.TitleOpts(title="成都-酒店地址分布"))
g.render("酒店地址分布.html")
运行效果如下:
作者:叶庭云
公众号:微信搜一搜【修炼Python】 分享学习文档、教程资料和简历模板
CSDN:https://yetingyun.blog.csdn.net/
本文仅用于交流学习,未经作者允许,禁止转载,更勿做其他用途,违者必究。
发现求知的乐趣,在不断总结和学习中进步,与诸君共勉。