- 数学建模基础训练-1:概念解析
MPCTHU
数学建模数学建模
文章目录数学建模基础训练-1:概念解析问题一:如何找到“概念”?问题二:如何全面理解概念的基础含义?问题三:如何深刻理解概念并作出创新点发掘?实际举例问题一:研究并给出寒假开学某大学返校交通问题的合理解决方案首先,找到“概念”:其次,认识基础概念:第三,对概念的二次挖掘学生到校与离校的交通流量模型交通拥堵对学校教学与运营的影响模型交通安全事故风险评估模型学校交通设施规划与优化模型问题二:研究并给出
- OpenCV:人脸检测与Haar级联分类器(十三)
WHCIS
opencvopencv数学建模人工智能计算机视觉音视频算法
一、Haar级联检测深度解析1.1Haar特征数学建模Haar特征的本质是通过矩形区域对比捕捉局部特征,其数学形式可扩展为四元组表示:特征定义:Haar(f)=(t,x,y,w,h)×s\text{Haar}(f)=(t,x,y,w,h)\timessHaar(f)=(t,x,y,w,h)×s其中:ttt表示特征类型(共14种基础变体)(x,y)(x,y)(x,y)为特征锚点坐标(w,h)(w,h
- 2025年美赛数学建模 ICM 问题 F: 网络安全强大吗?
深度学习&目标检测实战项目
2025年美赛MCM/ICM数学建模2025年数学建模美赛2025美赛F题网络安全强大吗思路代码F题
全部都是公开资料,不代写论文,请勿盲目订阅)2025年数学建模美赛期间,会发布思路和代码,赛前半价,赛前会发布往年美赛的经典案例,赛题会结合最新款的chatgpto1pro分析,会根据赛题难度,选择合适的题目着重分析,没有代写论文服务,只会发布思路和代码,因为赛制要求,不会回复私信。内容可能达不到大家预期,请不要盲目订阅。已开通200美元/月的chatgptpro会员,会充分利用chatgpto1
- 2023年研究生数学建模竞赛优秀论文汇总
Xiaoxll12
数学建模
A题:WLAN网络信道接入机制建模B题:DFT类矩阵的整数分解逼近:解析与优化方法C题:大规模创新类竞赛评审方案研究D题:区域双碳目标与路径规划研究E题:出血性脑卒中临床智能诊疗模型的建立F题:强对流降水临近预报收集的历年研究生数学建模竞赛代码(部分)
- DataWhale 数学建模导论学习笔记(第一章)
ryanYu_127
学习笔记
要点:利用Python作为计算工具帮助解决数学模型。一、前期准备工作1.AnacondaNavigator帮助安装了NumPy所需的功能包。2.通过Jupyter_Lab,可以直接测试代码运行的结果。3.通过vscode可以修改文本并即时看到预览结果,解决一些符号、公式、表格显示不正常的问题。4.这也是我第一次使用CSDN记录自己的学习笔记。二、进入第一章正题解析方法与几何建模:1.前面的向量和矩
- 第六届MathorCup高校数学建模挑战赛-A题:淡水养殖池塘水华发生及池水自净化研究
格图素书
大数据竞赛赛题解析数学建模
目录摘要1问题的重述2问题的分析2.1问题一的分析2.2问题二的分析2.3问题三的分析2.4问题四的分析2.5问题五的分析3.问题的假设4.符号说明5.模型的建立与求解5.1问题一的建模与求解5.1.1分析对象与指标的选取5.1.2折线图分析5.1.3相关性分析5.1.4问题1的结果分析5.2问题二的建模与求解5.2.1分析对象与指标的选取5.2.2Topsis算法评价5.2.3综合污染指数法5.
- Datawhale数学建模导论课程第八章学习心得(I)一时间序列与投资模型
星.惜尘
数学建模
学习链接:Datawhale数学建模教程Descriptionhttps://datawhalechina.github.io/intro-mathmodel/#/CH8/%E7%AC%AC8%E7%AB%A0-%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97?id=_811-%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97%e7%9a%84%e5%
- 数学建模与MATLAB实现:插值技术详解
青橘MATLAB学习
#数学建模Matlab编程实验数学建模matlab开发语言
引言插值是数学建模与数据分析中的核心技术,广泛应用于信号处理、图像重建、地理信息系统等领域。本文基于一维插值与二维插值的理论框架,结合MATLAB代码实战,系统讲解拉格朗日插值、分段线性插值、三次样条插值等方法,并通过温度预测、地貌分析等案例,帮助读者掌握插值技术的核心原理与实现技巧。一、插值基础理论1.一维插值定义:已知函数在有限点x0,x1,…,xnx_0,x_1,\dots,x_nx0,x1
- 数学建模与MATLAB实现:稳定状态模型与资源管理策略
青橘MATLAB学习
#数学建模Matlab编程实验数学建模算法
引言在实际问题中,动态过程的瞬时性态往往难以直接分析,而研究其稳定状态的特征则更具实际意义。本章介绍如何通过微分方程稳定性理论,结合再生资源管理、种群竞争等案例,分析系统的平衡点及稳定性,为实际决策提供数学依据。一、微分方程稳定性理论1.1基本概念自治系统:若微分方程组不显含时间变量ttt,则称为自治系统。例如:dxdt=F(x)\frac{dx}{dt}=F(x)dtdx=F(x)非自治系统可通
- 美国大学生数学建模竞赛COMAP2025-C题深度解读
@BreCaspian
数学建模数学建模
COMAP竞赛C题深度分析与创新解答一、问题重述与目标细化核心目标:预测2028年洛杉矶奥运会各国金牌及总奖牌数,并提供预测区间。识别可能首次获奖的国家,量化其概率。分析运动项目对奖牌的贡献度,提出国家优势项目优化策略。量化“教练效应”,推荐需引进教练的国家及项目组合。挑战:历史数据跨度长(1896–2024),需处理国家演变(如苏联解体)。教练数据稀疏,需设计间接指标衡量其影响。新兴项目(如滑板
- 美国大学生数学建模竞赛COMAP2025-A题深度解读
@BreCaspian
数学建模数学建模
COMAP2025A题全面深度解答:基于多尺度建模与智能分析的楼梯磨损研究一、问题背景与核心挑战题目要求:通过非破坏性测量方法,分析楼梯的磨损特征(如深度、形状、材料成分),推断以下信息:使用频率:每日或每年的使用次数。使用方向:单向或双向通行。同时使用人数:高峰时段的并行使用者数量。年龄与修复历史:楼梯的建造时间及是否经过修复。材料来源:验证材料是否与已知采石场或木材来源匹配。核心挑战:数据采集
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- python实现线性规划 数学建模 代替matlab
Leowner
python数学建模python数学建模
要解决的问题如图所示importnumpyasnpfromscipyimportoptimizez=np.array([2,3,1])a=np.array([
- 数学建模与MATLAB实现:无约束优化
青橘MATLAB学习
#数学建模Matlab编程实验数学建模matlab开发语言
无约束优化是数学建模中的一个重要问题,广泛应用于工程、经济、管理等领域。本文介绍了无约束优化的基本思想、常用算法,并重点讲解了如何使用MATLAB求解无约束优化问题。一、无约束优化问题无约束优化问题的标准形式为:minf(x)\minf(x)minf(x)其中,(x)是决策变量,(f(x))是目标函数。无约束优化的目标是找到使目标函数(f(x))最小的(x)值。二、无约束优化的基本算法1.最速下
- 数学建模与MATLAB实现:线性规划
青橘MATLAB学习
数学建模matlab开发语言
线性规划是数学建模中常用的一种优化方法,广泛应用于资源分配、生产计划、投资决策等领域。本文将介绍线性规划的基本概念,并重点讲解如何使用MATLAB求解线性规划问题,特别是对MATLAB中的linprog函数进行详细说明。一、线性规划的基本概念线性规划(LinearProgramming,LP)是数学规划中的一种,其目标函数和约束条件均为线性函数。线性规划问题的标准形式如下:minimizef(x)
- 多元线性回归模型:理论、应用与数学建模实例
小柒笔记
数学建模线性回归算法
引言多元线性回归模型是数学建模中的一种重要工具,它用于分析两个或两个以上自变量与一个因变量之间的关系。在许多实际问题中,如经济学、生物统计学、环境科学和社会科学等领域,多元线性回归模型都发挥着关键作用。本文将介绍多元线性回归模型的基本概念、数学表达式及其在数学建模中的应用。一、多元线性回归模型的基本概念1.1定义多元线性回归模型是指包含一个因变量和多个自变量的线性回归模型。数学上,它可以表示为:Y
- 基于联合概率密度与深度优化的反潜航空深弹命中概率模型研究摘要
終不似少年遊*
人工智能算法数学建模python
前言:项目题材来自数学建模2024年的D题,文章内容为笔者和队友原创,提供一个思路。摘要随着现代军事技术的发展,深水炸弹在特定场景下的反潜作战效能日益凸显,如何最大化的发挥深弹威力也成为重要研究课题。本文针对评估深弹投掷落点对命中潜艇概率的影响进行分析,综合利用Python、geogebra和draw.io等,以得出最大命中率、最优投掷方案和联合阵列编排的合理方案为目标建立了深度命中率模型,并使用
- 基于Hexo的主题Fluid搭建Github博客
qq742234984
计算机githubgitnpmnode.jshexo
公众号:数学建模与人工智能基于Hexo的主题Fluid搭建Github博客一、Github配置1.安装Git2.部署本地Git与Github连接(SSH)二、node.js安装和环境配置1.安装node.js2.查看安装是否成功(版本号)3.配置环境变量三、下载Hexo并配置fluid主题1.下载Hexo2.配置fluid主题1.安装fluid2.配置fluid3.更新部署博客页面4.部署到git
- 数模测评:doubao1.5>deepseek-v3>gpt-o1
您好啊数模君
gpt数学建模deepseekdoubao
本次测试了当前评价最高的三款大模型doubao1.5、gpt-o1、deepseek-v3(r1崩溃),都是采用无提示词的硬核提问方式,测试视频如下。gpto1、doubao1.5、deepseek测评测试方式:上传美赛六道题目文件直接提问以下5句话:这是一道数学建模题目,请做下问题重述请给出每一个问题的思路针对每个问题推荐前沿算法建立第一问数学模型编写第一问数学模型的程序
- JCR一区级 | Matlab实现蜣螂算法DBO-Transformer-LSTM多变量回归预测
Matlab机器学习之心
算法matlabtransformer
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:水质预测对于环境保护和资源管理至关重要。本文提出了一种基于蜣螂算法(DungBeetleOptimizer,DBO)、DBO-Transformer和LSTM的多变量水质回归预测模型,旨在提高水质参数
- 【深度学习】因果推断与机器学习的高级实践 数学建模_问题根因 分析 机器学习
2401_84239830
程序员深度学习机器学习数学建模
现阶段深度学习有三大特征:数据驱动:即数据训练,将数据输入到模型中进行训练;关联学习:模型基于给定训练数据集,进行关联学习;概率输出:即最后的输出,判断这个图片有“狗“的概率是多少。以数据驱动、关联学习、概率输出为特征的深度学习存在什么问题呢?以一个简单的图片识别问题为例:识别一张图片中是否有狗。在很多预测问题中,我们拿到的数据集往往都是有偏的,比如我们拿到的数据中有80%的图片中狗都在草地上,这
- 2025美赛数学建模F题:网络安全强大——思路+代码+模型
灿灿数模分号
web安全安全网络
详细思路更新见文末名片2025ICM问题F:网络安全强大?背景:我们世界的更多部分已经通过现代技术的奇迹互联起来。尽管这种在线连接性提高了全球生产力,并使世界变得更小,但它也增加了我们个人和集体在网络犯罪方面的脆弱性。网络犯罪之所以难以应对,原因有很多。许多网络安全事件跨越国界,使得调查和起诉这些犯罪时的管辖问题变得复杂。此外,许多机构,如投资公司,宁愿支付赎金而不报告被黑客攻击,避免让客户和潜在
- 2025美赛数学建模MCM/ICM选题建议与分析,思路+模型+代码
灿灿数模分号
数学建模
2025美赛数学建模MCM/ICM选题建议与分析,思路+模型+代码,详细更新见文末名片一、问题A:测试时间:楼梯的恒定磨损(ArchaeologicalModeling)适合专业:考古学、历史学、数学、机械工程难度:中等开放度:中等问题A让学生探索如何根据楼梯的磨损情况推断楼梯的使用情况。这个问题涉及到对磨损的定量分析,并通过历史记录推测使用模式。该题目适合对历史、考古以及机械磨损有兴趣的学生,尤
- 2025美赛美国大学生数学建模竞赛C题思路分析完整论文(45页)(含模型,可运行代码,运行结果)
小文数模
2025美国大学生数学建模竞赛2025美赛数学建模C数学建模pythonmatlab
2025美赛数学建模竞赛C题思路分析完整论文目录摘要一、问题重述二、问题分析三、模型假设四、模型建立与求解4.1问题14.1.1问题1思路分析4.1.2问题1模型建立4.1.3问题1样例代码(仅供参考)4.1.4问题1样例代码运行结果(仅供参考)4.2问题24.2.1问题2模型建立分析4.2.2问题2模型建立4.2.3问题2样例代码(仅供参考)4.2.4问题2样例代码运行结果(仅供参考)4.3问题
- 变分法实例详解:从最速降线到一般泛函的Mathematica验证
繁星不语有限元学习
数学建模算法
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档变分法实例详解:从最速降线到一般泛函的Mathematica验证一、最速降线问题:旋轮线的诞生1.问题背景2.数学建模3.Mathematica验证二、广义泛函极值问题:显式依赖变量的变分法1.问题描述2.数学推导3.Mathematica验证三、Mathematica工具包:`VariationalMethods`详解1.核心功能2
- 2025美赛数学建模c题思路+模型+代码分享!非机构不卖课(12:51已更新完善Q1模型的代码)
夜信431
机器学习人工智能数学建模大数据python
2025MCMC题思路分析中文版题目翻译在这里先不放了,重点说一下我和队友讨论出来的一个简单思路。题目背景信息排名、金牌、奖牌数量:奥运会奖牌榜的核心指标。奖牌预测方法:强调基于参赛运动员名单而非历史奖牌数据进行预测。数据限制:模型和分析必须仅使用提供的五个数据文件,所以好好想想到时候伟大教练应该怎么考虑(data_dictionary.csv,summerOly_athletes.csv,sum
- 备战美赛!2025美赛数学建模C题模拟预测!用于大家练手模拟!
灿灿数模
数学建模
完整的思路代码模型见文末2025美赛数学建模C题模拟题:城市交通拥堵指数的预测与管理策略背景随着全球城市化进程的加快,交通拥堵问题成为城市发展的重要挑战之一。交通拥堵不仅影响居民出行效率,还增加了能源消耗和碳排放。近年来,各大城市开始尝试通过实时数据监控和人工智能技术对交通拥堵进行预测和管理。然而,由于城市交通系统的复杂性,现有方法在实际应用中仍面临诸多挑战。任务作为一名数据分析专家,你的任务是基
- 2025数学建模美赛C题【Models for Olympic Medal Tables】第一问
步入烟尘
2025数学建模美赛C题2025数学建模美赛数学建模奥运会历史奖牌
本文为个人解题笔记,仅供参考学习。本文C题的第一问。其他问题均在本专栏内,订阅一次,全部可见。文章目录问题1解题全流程解题完整过程:建立预测奥运会奖牌数的数学模型1.数据分析与清理1.1数据来源与结构1.2数据清理2.探索性数据分析(EDA)2.1国家奖牌分布趋势2.2奖牌与赛事数量的关系2.3主办国优势分析3.模型建立3.1奖牌数预测模型3.2奖牌首次获得预测模型3.3奖牌分布与赛事类型关联模型
- 2025年美国大学生数学建模竞赛C题思路(对每题分析)
FFMXjy
数学建模学习-传统算法机器学习深度学习系列课程数学建模美赛美国大学生数学建模
2025年美国大学生数学建模竞赛C题思路开发奖牌数预测模型1.目标:建立一个模型来预测每个国家的奖牌数,特别是金牌和总奖牌数。步骤:2.使用提供的summerOly_athletes.csv和summerOly_medal_counts.csv数据。3.清理数据,处理缺失值和异常值。4.提取有用的特征,如国家、年份、项目、奖牌类型等。5.选择适当的机器学习算法,如线性回归、随机森林或梯度提升树。6
- 2025年数学建模美赛 A题分析(2)楼梯使用频率数学模型
youcans_
数学建模课数学建模Matlabpython
2025年数学建模美赛A题分析(1)TestingTime:TheConstantWearOnStairs2025年数学建模美赛A题分析(2)楼梯磨损分析模型2025年数学建模美赛A题分析(3)楼梯使用方向偏好模型2025年数学建模美赛A题分析(4)楼梯使用人数模型特别提示:本文针对2025年A题进行分析,每天不断更新,建议收藏。其它题目的分析详见【youcans的数学建模课】专栏。文章目录202
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt