LeetCode总结 -- 数值计算篇

数值计算在工业界是非常实用而且常见的具体问题, 所以在面试中出现频率非常高, 几乎可以说是必考题目。 LeetCode中关于数值运算的有以下题目: 
Palindrome Number
Reverse Integer
Sqrt(x)
Pow(x, n)
Divide Two Integers
Max Points on a Line
在LeetCode中, 关于数值运算的题目分为三种类型, 下面将进行一一讲解。 

第一种类型是最简单的, 就是对整数进行直接操作, 一般来说就是逐位操作, 比如反转, 比较等。 LeetCode中这类题目有 Palindrome Number Reverse Integer 。 这类题目通常思路很清晰, 要注意的点就是对于边界情况的考虑, 对于数值而言, 主要问题是对于越界情况的考虑。 实际上越界问题是贯穿于所有数值计算题目的常见问题, 下面大多问题都会强调这点。 
Palindrome Number 中因为只是进行判断, 并不需要修改数字, 所以没有越界问题。 思路比较简单, 就是每次取出最高位和最低位进行比较, 直到相遇或者出现违背条件(也就是不相等)即可返回。 对于 Reverse Integer 因为需要对数字进行反转, 所以需要注意反转后的数字可能会越界。 对于越界一般都是两种处理方法, 一种是返回最大(或者最小)数字, 一种则是抛出异常, 这个可以跟面试官讨论, 一般来说, 面试只要简单的返回最大最小或者dummy数字就可以了, 但是处理和检查这种corner case(也就是越界)的想法一定要有和跟面试官讨论。 

第二种题型是算术运算的题目, 比如乘除法, 阶乘, 开方等, LeetCode中这类题目有 Sqrt(x) ,  Pow(x, n) Divide Two Integers 。 这种题目有时候看似复杂, 其实还是有几个比较通用的解法的, 下面主要介绍三种方法: 
(1)二分法。 二分法是数值计算中很常用和易懂的方法。 基本思路是对于所求运算进行对半切割, 有时是排除一半, 有时则是得到可重复使用的历史数据。 Sqrt(x) 就是属于每次排除一半的类型, 对于要求的开方数字进行猜测, 如果大于目标, 则切去大的一半, 否则切去大的一半, 原理跟二分查找是一样的。 Pow(x, n) 则是属于重复利用数据的类型, 因为x的n次方实际上是两个x的n/2次方相乘, 所以我们只需要递归一次求出当前x的当前指数的1/2次方, 然后两个相乘就可以最后结果。 二分法很明显都是每次解决一半, 所以时间复杂度通常是O(logn)量级的。 
(2)牛顿法。 这种方法可以说主要是数学方法, 不了解原理的朋友可以先看看 牛顿法-维基百科 。  Sqrt(x) 就非常适合用牛顿法来解决, 因为它的递推式中的项都比较简单。  Pow(x, n) 当然原理上也可以用牛顿法解答, 但是因为他的递推式中有项是进行x的开n次方的, 这个计算代价也是相当大的, 如果为了求x的n次方而去每一步求开n次方就没有太大实际意义了, 所以对于这种题我们一般不用牛顿法。 
(3)位移法。 这种方法主要基于任何一个整数可以表示成以2的幂为底的一组基的线性组合, 对一个整数进行位数次迭代求解, 因为复杂度是位数的数量, 所以也跟二分法一样是O(logn)量级的。  Pow(x, n) Divide Two Integers 就是比较典型可以用这种方法解决的题目。 对于 Pow(x, n) 可以把n分解成位, 每次左移恰好是当前数的平方, 所以进行位数次迭代后即可以得到结果, 代码中很大的篇幅都是在处理越界问题, 而关于逐位迭代代码却很简短。  Divide Two Integers 同样把结果分解成位, 每次对除数进行位移并且减去对应的除数来确定每一位上的结果。 这种方法可能理解起来没有二分法那么直观, 还是要消化一下哈。 

第三种题目是解析几何的题目, 一般来说解析几何题目的模型都比较复杂, 而且实现细节比较多, 在面试中并不常见, LeetCode中也只有 Max Points on a Line 是属于这种题型。 这种题目没有什么通法, 主要就是要理清数学和几何模型, 比如 Max Points on a Line 中主要是理解判断点在直线的判断公式, 然后进行迭代实现。 实现细节还是比较多的, 需要对一些边界情况仔细考虑。 

这篇总结主要列举了LeetCode中关于数值计算的题目, 介绍了这类问题的主要考点(比如越界判断)和常用的几种实用方法, 总体感觉这类问题是在面试中比较难很快写对的题目, 因为有一些边界情况和数值实现的细节。 因为出现频率很高, 还是需要对这类题目重点练习哈。

你可能感兴趣的:(LeetCode总结,leetcode,java,面试,数值计算,算法)