在应用的的开发过程中,由于初期数据量小,开发人员写 SQL 语句时更重视功能上的实现,但是当应用系统正式上线后,随着生产数据量的急剧增长,很多 SQL 语句开始逐渐显露出性能问题,对生产的影响也越来越大,此时这些有问题的 SQL 语句就成为整个系统性能的瓶颈,因此我们必须要对它们进行优化。
MySQL 客户端连接成功后,通过 show [session|global] status
命令可以提供服务器状态信息。
show[session|global] status
可以根据需要加上参数“session”或者“global”来显示 session 级(当前连接)的计结果和 global 级(自数据库上次启动至今)的统计结果。
如果不写,默认使用参数是“session”。
下面的命令显示了当前 session 中所有统计参数的值:
show status like 'Com_______';
show status like 'Innodb_rows_%';
我们通常比较关心的是以下几个统计参数:
Com_*** : 这些参数对于所有存储引擎的表操作都会进行累计。
Innodb_*** : 这几个参数只是针对InnoDB 存储引擎的,累加的算法也略有不同。
可以通过以下两种方式定位执行效率较低的 SQL 语句:
慢查询日志 : 通过慢查询日志定位那些执行效率较低的 SQL 语句,用--log-slow-queries[=file_name]
选项启动时,mysqld 写一个包含所有执行时间超过 long_query_time 秒的 SQL 语句的日志文件。
show processlist
: 慢查询日志在查询结束以后才纪录,所以在应用反映执行效率出现问题的时候查询慢查询日志并不能定位问题,可以使用show processlist命令查看当前MySQL在进行的线程,包括线程的状态、是否
锁表等,可以实时地查看 SQL 的执行情况,同时对一些锁表操作进行优化。
1) id列,用户登录mysql时,系统分配的"connection_id",可以使用函数connection_id()查看
2) user列,显示当前用户。如果不是root,这个命令就只显示用户权限范围的sql语句
3) host列,显示这个语句是从哪个ip的哪个端口上发的,可以用来跟踪出现问题语句的用户
4) db列,显示这个进程目前连接的是哪个数据库
5) command列,显示当前连接的执行的命令,一般取值为休眠(sleep),查询(query),连接(connect)等
6) time列,显示这个状态持续的时间,单位是秒
7) state列,显示使用当前连接的sql语句的状态,很重要的列。state描述的是语句执行中的某一个状态。一个sql语句,以查询为例,可能需要经过copying to tmp table、sorting result、sending data等状态才可以完成
8) info列,显示这个sql语句,是判断问题语句的一个重要依据
通过以上步骤查询到效率低的 SQL 语句后,可以通过 EXPLAIN
或者 DESC
命令获取 MySQL如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。
查询SQL语句的执行计划 :
explain select * from city where city_id =1;
explain select * from city where city_name ='西安';
字段 | 含义 |
---|---|
id | select查询的序列号,是一组数字,表示的是查询中执行select子句或者是操作表的顺序。 |
select_type | 表示 SELECT 的类型,常见的取值有 SIMPLE(简单表,即不使用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION 中的第二个或者后面的查询语句)、SUBQUERY(子查询中的第一个 SELECT)等 |
table | 输出结果集的表 |
type | 表示表的连接类型,性能由好到差的连接类型为( system —> const -----> eq_ref ------> ref-------> ref_or_null----> index_merge —> index_subquery -----> range -----> index ------>all ) |
possible_keys | 表示查询时,可能使用的索引 |
key | 表示实际使用的索引 |
key_len | 索引字段的长度 |
rows | 扫描行的数量 |
filtered | 通过表条件过滤出的行数的百分比估计值。 |
extra | 执行情况的说明和描述 |
环境准备:
CREATE TABLE `t_role` (
`id` varchar(32) NOT NULL,
`role_name` varchar(255) DEFAULT NULL,
`role_code` varchar(255) DEFAULT NULL,
`description` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `unique_role_name` (`role_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE `t_user` (
`id` varchar(32) NOT NULL,
`username` varchar(45) NOT NULL,
`password` varchar(96) NOT NULL,
`name` varchar(45) NOT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `unique_user_username` (`username`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE `user_role` (
`id` int(11) NOT NULL auto_increment ,
`user_id` varchar(32) DEFAULT NULL,
`role_id` varchar(32) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `fk_ur_user_id` (`user_id`),
KEY `fk_ur_role_id` (`role_id`),
CONSTRAINT `fk_ur_role_id` FOREIGN KEY (`role_id`) REFERENCES `t_role` (`id`) ON
DELETE NO ACTION ON UPDATE NO ACTION,
CONSTRAINT `fk_ur_user_id` FOREIGN KEY (`user_id`) REFERENCES `t_user` (`id`) ON
DELETE NO ACTION ON UPDATE NO ACTION
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into `t_user` (`id`, `username`, `password`, `name`)values('1','super','$2a$10$TJ4TmCdK.X4wv/tCqHW14.w70U3CC33CeVncD3SLmyMXMknstqKRe','超级管理员');
insert into `t_user` (`id`, `username`, `password`, `name`)values('2','admin','$2a$10$TJ4TmCdK.X4wv/tCqHW14.w70U3CC33CeVncD3SLmyMXMknstqKRe','系统管理员');
insert into `t_user` (`id`, `username`, `password`, `name`)values('3','itcast','$2a$10$8qmaHgUFUAmPR5pOuWhYWOr291WJYjHelUlYn07k5ELF8ZCrW0Cui','test02');
insert into `t_user` (`id`, `username`, `password`, `name`)values('4','stu1','$2a$10$pLtt2KDAFpwTWLjNsmTEi.oU1yOZyIn9XkziK/y/spH5rftCpUMZa','学生1');
insert into `t_user` (`id`, `username`, `password`, `name`)values('5','stu2','$2a$10$nxPKkYSez7uz2YQYUnwhR.z57km3yqKn3Hr/p1FR6ZKgc18u.Tvqm','学生2');
insert into `t_user` (`id`, `username`, `password`, `name`)values('6','t1','$2a$10$TJ4TmCdK.X4wv/tCqHW14.w70U3CC33CeVncD3SLmyMXMknstqKRe','老师1');
INSERT INTO `t_role` (`id`, `role_name`, `role_code`, `description`) VALUES('5','学生','student','学生');
INSERT INTO `t_role` (`id`, `role_name`, `role_code`, `description`) VALUES('7','老师','teacher','老师');
INSERT INTO `t_role` (`id`, `role_name`, `role_code`, `description`) VALUES('8','教学管理员','teachmanager','教学管理员');
INSERT INTO `t_role` (`id`, `role_name`, `role_code`, `description`) VALUES('9','管理员','admin','管理员');
INSERT INTO `t_role` (`id`, `role_name`, `role_code`, `description`) VALUES('10','超级管理员','super','超级管理员');
INSERT INTO user_role(id,user_id,role_id) VALUES(NULL, '1', '5'),(NULL, '1', '7'),(NULL, '2', '8'),(NULL, '3', '9'),(NULL, '4','8'),(NULL, '5', '10') ;
id 字段是 select 查询的序列号,是一组数字,表示的是查询中执行select子句或者是操作表的顺序。
id 情况有三种:
explain select * from t_role r, t_user u, user_role ur where r.id = ur.role_id and
u.id = ur.user_id ;
EXPLAIN SELECT * FROM t_role WHERE id = (SELECT role_id FROM user_role WHERE user_id = (SELECT id FROM t_user WHERE username = 'stu1'))
EXPLAIN SELECT * FROM t_role r , (SELECT * FROM user_role ur WHERE ur.`user_id` = '2') a WHERE r.id = a.role_id ;
展示这一行的数据是关于哪一张表的
type 显示的是访问类型,是较为重要的一个指标,可取值为:
结果值性能从上往下越来越坏。
一般来说, 我们需要保证查询至少达到 range 级别, 最好达到ref 。
扫描行的数量。
通过表条件过滤出的行数的百分比估计值.
MYSQL从5.0.37版本开始增加了对 show profiles 和 show profile 语句的支持。show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。
通过 have_profiling 参数,能够看到当前MySQL是否支持profile:
select @@have_profiling;
默认profiling是关闭的,可以通过set语句在Session级别开启profiling:
set profiling=1; //开启profiling 开关;
通过profile,我们能够更清楚地了解SQL执行的过程.
首先,我们可以执行一系列的操作,如下图所示:
执行完上述命令之后,再执行show profiles
指令, 来查看SQL语句执行的耗时:
通过show profile for query query_id 语句可以查看到该SQL执行过程中每个线程的状态和消耗的时间:
TIP :
Sending data 状态表示MySQL线程开始访问数据行并把结果返回给客户端,而不仅仅是返回个客户端。由于在Sending data状态下,MySQL线程往往需要做大量的磁盘读取操作,所以经常是整各查询中耗时最长的状态。
在获取到最消耗时间的线程状态后,MySQL支持进一步选择all、cpu、block io 、context switch、page faults等明细类型类查看MySQL在使用什么资源上耗费了过高的时间。例如,选择查看CPU的耗费时间 :
MySQL5.6提供了对SQL的跟踪trace, 通过trace文件能够进一步了解为什么优化器选择A计划, 而不是选择B计划。
打开trace , 设置格式为 JSON,并设置trace最大能够使用的内存大小,避免解析过程中因为默认内存过小而不能够完整展示。
SET optimizer_trace="enabled=on",end_markers_in_json=on;
set optimizer_trace_max_mem_size=1000000;
执行SQL语句:
select * from tb_1 item where id < 4;
最后, 检查information_schema.optimizer_trace就可以知道MySQL是如何执行SQL的 :
select * from information_schema.optimizer_trace\G;
经过上面方法定位到性能差的SQL语句,再通过下面实现优化。
当使用load 命令导入数据的时候,适当的设置可以提高导入的效率。
对于 InnoDB 类型的表,有以下几种方式可以提高导入的效率:
SET UNIQUE_CHECKS=0
,关闭唯一性校验,在导入结束后执行SET UNIQUE_CHECKS=1
,恢复唯一性校验,可以提高导入的效率。SET AUTOCOMMIT=0
,关闭自动提交,导入结束后再执行 SET AUTOCOMMIT=1
,打开自动提交,也可以提高导入的效率。当进行数据的insert操作的时候,可以考虑采用以下几种优化方案。
如果需要同时对一张表插入很多行数据时,应该尽量使用多个值表的insert语句,这种方式将大大的缩减客户端与数据库之间的连接、关闭等消耗。使得效率比分开执行的单个insert语句块。
示例, 原始方式为:
优化后的方案为 :
数据有序插入
两种排序方式:
Filesort 的优化
通过创建合适的索引,能够减少 Filesort 的出现,但是在某些情况下,条件限制不能让Filesort消失,那就需要加快 Filesort的排序操作。对于Filesort , MySQL 有两种排序算法:
1)两次扫描算法 :MySQL4.1 之前,使用该方式排序。首先根据条件取出排序字段和行指针信息,然后在排序区 sort buffer中排序,如果sort buffer不够,则在临时表 temporary table 中存储排序结果。完成排序之后,再根据行指针回表读取记录,该操作可能会导致大量随机I/O操作。
2)一次扫描算法:一次性取出满足条件的所有字段,然后在排序区 sort buffer 中排序后直接输出结果集。排序时内存开销较大,但是排序效率比两次扫描算法要高。
MySQL 通过比较系统变量 max_length_for_sort_data 的大小和Query语句取出的字段总大小, 来判定是否那种排序算法,如max_length_for_sort_data 更大,那么使用第二种优化之后的算法;否则使用第一种。
可以适当提高 sort_buffer_size 和 max_length_for_sort_data 系统变量,来增大排序区的大小,提高排序的效率。
由于GROUP BY 实际上也同样会进行排序操作,而且与ORDER BY 相比,GROUP BY 主要只是多了排序之后的分组操作。当然,如果在分组的时候还使用了其他的一些聚合函数,那么还需要一些聚合函数的计算。所以,在GROUP BY 的实现过程中,与 ORDER BY 一样也可以利用到索引。
如果查询包含 group by 但是用户想要避免排序结果的消耗, 则可以执行order by null 禁止排序。如下 :
explain select age,count(*) from emp group by age;
explain select age,count(*) from emp group by age order by null;
从上面的例子可以看出,第一个SQL语句需要进行"filesort",而第二个SQL由于order by null 不需要进行"filesort", 而上文提过Filesort往往非常耗费时间。
Mysql4.1版本之后,开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。使用子查询可以一次性的完成很多逻辑上需要多个步骤才能完成的SQL操作,同时也可以避免事务或者表锁死,并且写起来也很容易。但是,有些情况下,子查询是可以被更高效的连接(JOIN)替代。
示例 ,查找有角色的所有的用户信息 :
explain select * from t_user where id in (select user_id from user_role );
explain select * from t_user u , user_role ur where u.id = ur.user_id;
连接(Join)查询之所以更有效率一些 ,是因为MySQL不需要在内存中创建临时表来完成这个逻辑上需要两个步骤的查询工作。
对于包含OR的查询子句,如果要利用索引,则OR之间的每个条件列都必须用到索引 , 而且不能使用到复合索引; 如果没有索引,则应该考虑增加索引。
示例 :
explain select * from emp where id = 1 or age = 30;
explain select * from emp where id = 1 union select * from emp where age = 30;
我们来比较下重要指标,发现主要差别是 type 和 ref 这两项
type 显示的是访问类型,是较为重要的一个指标,结果值从好到坏依次是:
UNION 语句的 type 值为 ref,OR 语句的 type 值为 range,可以看到这是一个很明显的差距
UNION 语句的 ref 值为 const,OR 语句的 type 值为 null,const 表示是常量值引用,非常快
这两项的差距就说明了 UNION 要优于 OR 。
一般分页查询时,通过创建覆盖索引能够比较好地提高性能。一个常见又非常头疼的问题就是 limit 2000000,10 ,此时需要MySQL排序前2000010 记录,仅仅返回2000000 - 2000010 的记录,其他记录丢弃,查询排序的代价非常大 。
优化思路:
1)在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
2)该方案适用于主键自增的表,可以把Limit 查询转换成某个位置的查询 。
SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
在查询语句中表名的后面,添加 use index 来提供希望MYSQL去参考的索引列表,就可以让MYSQL不再考虑其他可用的索引。
create index idx_seller_name on tb_seller(name);
如果用户只是单纯的想让MySQL忽略一个或者多个索引,则可以使用 ignore index 作为 hint 。
explain select * from tb_seller ignore index(idx_seller_name) where name = '小米科技';
为强制MySQL使用一个特定的索引,可在查询中使用 force index 作为hint 。
create index idx_seller_address on tb_seller(address);