【数据聚类】基于遗传算法之聚类设计matlab源码

一、简介

1 遗传算法简介
遗传算法是一种模拟自然进化的优化搜索算法。由于它仅依靠适应度函数就可以搜索最优解,不需要有关问题解空间的知识,并且适应度函数不受连续可微等条件的约束,因此在解决多维、高度非线性的复杂优化问题中得到了广泛应用和深入研究。
遗传算法在模式识别、神经网络、机器学习、工业优化控制、自适应控制、生物科学、社会科学等方面都得到应用。
2 遗传算法原理
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、源代码

clc
tic
%%参数初始化
maxgen=100; %进化代数,即迭代次数,初始预定值选为100
sizepop=200; %种群规模,初始预定值选为100
pcross=0.9; %交叉概率选择,0和1之间,一般取0.9
pmutation=0.01; %变异概率选择,0和1之间,一般取0.01
individuals=struct('fitness',zeros(1,sizepop),'chrom',[]);
%种群,种群由sizepop条染色体(chrom)及每条染色体的适应度(fitness)组成
avgfitness=[];
%记录每一代种群的平均适应度,首先赋给一个空数组
bestfitness=[];
%记录每一代种群的最佳适应度,首先赋给一个空数组
bestchrom=[];
%记录适应度最好的染色体,首先赋给一个空数组
%初始化种群
for i=1:sizepop
%随机产生一个种群
individuals.chrom(i,:)=4000*rand(1,12);
%把12个0~4000的随机数赋给种群中的一条染色体,代表K=4个聚类中心
x=individuals.chrom(i,:);
%计算每条染色体的适应度
individuals.fitness(i)=fitness(x);
end
%%找最好的染色体
[bestfitness bestindex]=max(individuals.fitness);
%找出适应度最大的染色体,并记录其适应度的值(bestfitness)和染色体所在的位置(bestindex)
bestchrom=individuals.chrom(bestindex,:);
%把最好的染色体赋给变量bestchrom
avgfitness=sum(individuals.fitness)/sizepop;
%计算群体中染色体的平均适应度

trace=[avgfitness bestfitness];
%记录每一代进化中最好的适应度和平均适应度

for i=1:maxgen
i
%输出进化代数
individuals=Select(individuals,sizepop);
avgfitness=sum(individuals.fitness)/sizepop;
%对种群进行选择操作,并计算出种群的平均适应度
individuals.chrom=Cross(pcross,individuals.chrom,sizepop);
%对种群中的染色体进行交叉操作
individuals.chrom=Mutation(pmutation,individuals.chrom,sizepop);
%对种群中的染色体进行变异操作
for j=1:sizepop
x=individuals.chrom(j,:);%解码
[individuals.fitness(j)]=fitness(x);
end
%计算进化种群中每条染色体的适应度
[newbestfitness,newbestindex]=max(individuals.fitness);
[worestfitness,worestindex]=min(individuals.fitness);
%找到最小和最大适应度的染色体及它们在种群中的位置
if bestfitnesspcross
        continue;
    end
    pick=rand;
    while pick==0    
        pick=rand;        
    end
    for i=1:sizepop    
        pick=pick-sumf(i);        
        if pick<0        
            index=[index i];            
            break;  
        end
    end
end
individuals.chrom=individuals.chrom(index,:);
individuals.fitness=individuals.fitness(index);
ret=individuals; 

三、运行结果

在这里插入图片描述
在这里插入图片描述

四、备注

完整代码或者代写添加QQ1575304183

往期回顾>>>>>>

【数据分析】时变参数随机波动率向量自回归模型(TVP-VAR)

【信号处理】基于ICA算法信号分离matlab源码

【数据分析】模糊二元决策树matlab源码

你可能感兴趣的:(matlab,数据分析)