- 深度学习驱动的极端天气预测:时空数据异常检测与应用全解析(基于Python + TensorFlow)
AI_DL_CODE
深度学习pythontensorflow人工智能天气预测
摘要:时空数据异常检测在气象领域识别偏离正常模式的数据点,对极端天气预测至关重要。深度学习,尤其是LSTM网络,因其强大的特征学习能力在该领域显示出巨大潜力。通过整合多源气象数据,深度学习模型能够自动挖掘复杂模式和非线性关系,提高预测准确性。然而,挑战依然存在,包括数据质量问题、模型可解释性不足以及极端天气的内在复杂性和不确定性。未来,通过模型架构创新、训练算法优化以及探索深度学习在气候预测、气象
- springboot毕设 基于java的在线学习交流平台 程序+论文
明思计算机毕设
springboot课程设计后端
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容研究背景随着互联网技术的飞速发展和全球教育资源的日益丰富,在线学习已成为人们获取知识、提升技能的重要途径。特别是在近年来,受各种因素影响,线上教育需求激增,促使在线学习交流平台不断涌现。这些平台旨在打破传统教育的时空限制,为学习者提供更加灵活、个性化的学习体验。然而,当前市场上的在线学
- 拿下美赛M奖之必备软件和网站!
东方建模.
数学建模
目录前言:一.题目翻译与理解:DeepL+知云文献翻译二.查找文献:国内外平台结合使用三.论文撰写:Word或LaTeX+Overleaf四.公式输入与思维导图:MathType+XMind五.阅读文献与文献管理:AdobeReader+Zotero六.模型求解与编程:MATLAB+Python+Lingo七.图形绘制与结果可视化:MATLAB+Python+Origin八.流程图与示意图:亿图图
- 单片机实物成品-005 水质监测系统(代码+硬件+论文)
学个单片机
单片机实物成品单片机嵌入式硬件
水质监测系统(水温+TDS(水质)+PH+浑浊度+蜂鸣器+灯光+自动模式+手动模式+wifi传输控制+送小程序源码)本项目以软硬件结合开发的方式,选择C语言作为硬件开发技术,以STM32单片机作为核心控制板,在数据传输节点上连接GP2Y1014粉尘传感器、DHT11温湿度传感器、MQ-2烟雾传感器、SGP30甲醛传感器对空气中PM2.5含量、温湿度高低、烟雾浓度、甲醛含量进行采集,并针对异常的数据
- 单片机实物成品-010 智能宠物喂食系统(代码+硬件+论文)
学个单片机
单片机实物成品单片机宠物嵌入式硬件
项目介绍版本1:oled显示+定时投喂(舵机模拟)+声光报警+显示实时时间---演示视频:智能宠物喂食001_哔哩哔哩_bilibili1.STM32F103C8T6单片机进行数据处理2.OLED液晶显示3,按键1在数据显示界面时按下按键1切换下一个界面,在校准时间界面时按下按键1退出校准时间界面,在设置定时时间界面中如果是处于设置某个时间的状态按下按键1退出否则切换下一个页面。4.按键2数据显示
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- 第83期 | GPTSecurity周报
aigcgpts
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.混乱中建立秩序:人
- 未来是计算机科学的天下,数学——计算机科学及应用未来不可或缺
英伦百宝箱
未来是计算机科学的天下
论文编号:YYSX006论文字数:3935,页数:05数学——计算机科学及应用未来不可或缺[摘要]:自从上世纪七八十年代,计算机科学与技术得到了迅速的发展,但是,世界起初是有了数学以后才出现计算机科学的,它是数学的延续和发展的辅助工具。首先,高等数学是计算机程序设计的奠基石,任何一个计算机程序设计都离不开数学的理论基础;其次,计算机科学的未来发展需要高等数学的辅助,计算机科学的发展过程中所使用的技
- Web APP 阶段性综述
预测模型的开发与应用研究
APPconstructionwebapp
WebAPP阶段性综述当前,WebAPP主要应用于电脑端,常被用于部署数据分析、机器学习及深度学习等高算力需求的任务。在医学与生物信息学领域,WebAPP扮演着重要角色。在生物信息学领域,诸多工具以WebAPP的形式呈现,相较之下,医学领域的此类应用数量相对较少。在医学和生物信息学的学术论文中,WebAPP是展示研究成果的有效工具,并且还能部署到网络上,服务于实际应用场景。ShinyAPP平台特性
- Time-LLM :超越了现有时间序列预测模型的学习器
福安德信息科技
AI预测大模型学习人工智能python大模型时序预测
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现holt提取时序序列特征TCN时
- 推荐文章:libpopcnt——高效位计数的神器
胡蓓怡
推荐文章:libpopcnt——高效位计数的神器libpopcntFastC/C++bitpopulationcountlibrary项目地址:https://gitcode.com/gh_mirrors/li/libpopcnt在数字处理和大数据分析的世界里,每毫秒的性能提升都是宝贵的。今天,我们要向大家隆重介绍一个名为libpopcnt的开源库,它专为快速计算数组中“1”比特的数量而生,是优化
- 什么是数据仓库?
狮歌~资深攻城狮
数据仓库
什么是数据仓库?数据仓库(DataWarehouse,简称DW)是一种面向分析和决策的数据存储系统,它将企业中分散的、异构的数据按照一定的主题和模型进行集成和存储,为数据分析、报表生成以及商业智能(BI)提供支持。数据仓库是大数据体系的重要组成部分,主要用于对大量历史数据的存储、处理和分析。简单来说,数据仓库是一个为数据分析和业务决策服务的系统,通过整合来自不同来源的数据,形成面向主题的、可查询的
- 如何实现集群部署
DaXiongJoker
持续部署nginxjava
集群部署是指将多个计算节点(通常是服务器)组合在一起,形成一个协同工作的系统,以提供更高的性能、可用性和可靠性。集群部署广泛应用于各种场景,如Web服务、数据库、大数据处理等。以下是关于集群部署的详细解释:1.基本概念集群(Cluster):一组相互连接的计算机,它们协同工作以提供单一的计算资源。节点(Node):集群中的每个计算机或服务器,负责执行特定的任务。2.主要目的高性能:通过并行处理任务
- MongoDB深度解析与实践案例
我的运维人生
mongodb数据库运维开发技术共享
MongoDB深度解析与实践案例在当今大数据与云计算盛行的时代,NoSQL数据库以其灵活的数据模型、水平扩展能力和高性能,成为处理海量数据的重要工具之一。MongoDB,作为NoSQL数据库的杰出代表,凭借其面向文档的存储结构、强大的查询语言以及丰富的生态系统,赢得了众多开发者和企业的青睐。本文将深入探讨MongoDB的核心特性、架构设计原则,并通过一个实际案例展示其在实际项目中的应用。一、Mon
- MongoDB深度解析与实践案例
我的运维人生
mongodb数据库运维开发技术共享
MongoDB深度解析与实践案例在当今大数据与云计算蓬勃发展的时代,NoSQL数据库以其灵活的数据模型、水平扩展能力和高性能,成为处理海量数据的重要工具。其中,MongoDB作为NoSQL数据库的佼佼者,凭借其面向文档的存储方式、强大的查询语言以及丰富的生态系统,在各类应用场景中大放异彩。本文将深入探讨MongoDB的核心特性、架构设计原则,并通过实际代码案例展示其在数据处理中的应用。一、Mong
- GraphRAG 本地 Ollama - 知识图谱
ericliu2017
知识图谱人工智能
欢迎来到GraphRAGLocalOllama!这个存储库是对微软的GraphRAG的激动人心的改编,旨在支持使用Ollama下载的本地模型。告别昂贵的OpenAPI模型,拥抱使用Ollama进行高效、具有成本效益的本地推理!研究论文有关GraphRAG实现的更多详细信息,请参阅GraphRAG论文。论文摘要使用检索增强生成(RAG)从外部知识源中检索相关信息,使大型语言模型(LLMs)能够回答关
- 2024年最新Python:Page Object设计模式_python page object,BTAJ大厂最新面试题汇集
m0_60707708
程序员python设计模式开发语言
最后硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是
- PolarDB for MySQL 三大核心之一POLARFS 今天扒开它--- 嘛是火星人
Austindatabases
mysql数据库
开头还是介绍一下群,如果感兴趣PolarDB,MongoDB,MySQL,PostgreSQL,Redis,OceanBase,SqlServer等有问题,有需求都可以加群群内有各大数据库行业大咖,可以解决你的问题。加群请联系liuaustin3,(共2600人左右1+2+3+4+5+6+7+8)(123456群均已爆满,新人进7群,8群,准备9群)PoalrDB这块,目前国内的博客在用户这个序列
- Linux内核性能调优:让系统飞起来的秘籍
在当今数字化时代,Linux系统凭借其强大的稳定性、开放性和灵活性,广泛应用于服务器、云计算、大数据等诸多领域。然而,随着业务量的不断增长和应用场景的日益复杂,Linux内核的性能面临着巨大挑战。哪怕是微小的性能瓶颈,都可能像滚雪球一样,在高负载运行时被无限放大,进而引发一系列严重问题。想象一下,一个电商网站在购物高峰期,由于Linux内核性能不佳,导致服务器响应迟缓。用户点击商品详情,页面却迟迟
- AI Agent:一场智能革命的开始
TechubNews
人工智能
在当今科技日新月异的时代,AI(人工智能)技术正以前所未有的速度改变着我们的生活和工作方式。其中,AIAgent作为AI领域的一个新兴分支,正逐渐展现出其巨大的潜力和价值。本文将深入探讨AIAgent的发展现状、核心优势以及未来的发展方向,带您领略这一前沿技术的无限魅力。一、AIAgent的发展现状:技术突破与广泛应用近年来,随着大数据、云计算和机器学习等技术的飞速发展,AIAgent的技术水平得
- 第79期 | GPTSecurity周报
aigcgpts
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.TrojanWhi
- 【论文速读】| Pipe-Cleaner:使用安全策略的灵活模糊测试
漏洞框架
基本信息原文标题:Pipe-Cleaner:FlexibleFuzzingUsingSecurityPolicies原文作者:AllisonNaaktgeboren,SeanNobleAnderson,AndrewTolmach,GregSullivan作者单位:PortlandStateUniversity,CharlesStarkDraperLaboratory关键词:fuzzing,secu
- 论文查重需要准备什么?
AI智能论文写作
论文阅读论文笔记
为了确保学术研究的真实性和可信度,论文查重已成为不可或缺的一环。随着高等教育的普及和互联网的发展,学术不端行为也愈发普遍,这使得有效的论文查重准备变得至关重要。以下是进行论文查重时应做的准备工作:准备好原始论文文本:这是查重的基础。在撰写过程中,学生应该注重原创性,合理引用现有文献,并严格遵守引用格式,以避免无意抄袭。选择专业的查重工具:市场上有多种查重软件可供选择。选择一个可靠且权威的工具非常重
- 三个案例,快速了解星环科技如何助力医疗数字化转型
科技医疗it
星环科技基于自身的技术优势和产品体系,为医疗行业提供湖仓集一体化医院数据中心、云原生架构的区域医疗中台、医疗数据要素运营流通等解决方案,并在业务应用领域与生态伙伴联合打造端到端的整体解决方案,满足医疗行业专业领域、复杂场景下的数字化转型需求。星环科技助力某三甲医院打造湖仓集一体大数据底座某大型综合三甲医院为解决全院各业务系统数据统一采集、存储、实时共享问题,联合星环科技打造“湖仓集”一体的技术底座
- 案例分享| 某港口集团企业级数据管理及分析应用体系构建
数据分析
平台工具体系|数据治理某港口集团已建成多个信息化系统,充分满足集团职能管理方面的需求,但垂直化的职能管理使各职能领域的指标体系、业务流程和业务系统呈现出条状划分的鲜明特点,数据共享存在“壁垒”,缺少横向的业务流程梳理和贯通,导致港口数据标准不统一、各业务系统数据“孤岛化”明显,特别是随着对数据增值利用和精细化管理要求的逐步提高,已难以应对日趋复杂的业务需求。通过运用大数据基础平台TDH、大数据开发
- KDD 2024 | 美团技术团队精选论文解读 & 论文分享会预告
美团机器学习深度学习
ACMSIGKDD(KnowledgeDiscoveryandDataMining,简称KDD)是数据挖掘领域的国际顶级会议。KDDCup比赛是由SIGKDD主办的数据挖掘研究领域的国际顶级赛事,从1997年开始,每年举办一次,是目前数据挖掘领域最有影响力的赛事。本文精选了美团技术团队被KDD2024收录的5篇长文进行解读,覆盖了用户意图感知、机器学习&运筹优化、在线控制实验、联合广告模型、实时调
- 【武汉东湖学院主办 | ACM出版 | 高录用 | 快检索】第六届计算机信息和大数据应用国际学术会议(CIBDA 2025)
艾思科蓝 AiScholar
学术会议计算机科学计算机技术工程大数据信息可视化软件工程人工智能分布式深度学习算法
大会官网:www.ic-cibda.org【参会投稿】大会时间:2025年3月14-16日大会地点:中国-武汉论文出版:会议投稿经过2-3位组委会专家严格审核后,最终所录用的论文将被ACMICPS(ACMInternationalConferenceProceedingSeries)出版论文集,并提交至ACMDigitallibrary,EICompendex,Scopus检索。目前该会议论文检索
- 【论文投稿】解锁Vue.js组件开发的神奇密码
小周不想卷
艾思科蓝学术会议投稿vue.js
目录一、引言:Vue.js组件化的魅力之源二、初窥门径:组件的基础架构(一)组件的构成要素(二)创建首个Vue组件实例三、进阶之路:组件通信的艺术(一)父子组件间的通信之道(二)兄弟组件与跨层级通信的谋略四、实战演练:打造Vue.js组件库(一)规划组件库架构(二)开发实用组件五、总结:Vue.js组件开发的智慧结晶一、引言:Vue.js组件化的魅力之源在当今的前端开发领域,Vue.js已然成为备
- “大数据+技校”:VR虚拟仿真实训室的发展前景
武汉唯众智创
大数据vr大数据实训室大数据实验室大数据VR实训室
在技术教育的新时代,大数据与虚拟现实技术的融合正在重塑技校的教学模式。"大数据+技校"模式下的VR虚拟仿真实训室,为技校学生提供了一个创新的学习平台,预示着教育方式的深刻变革。一、大数据与技校教育的深度融合大数据技术的应用为技校教育带来了前所未有的机遇。通过收集和分析学生的学习数据、行为数据以及就业数据等,技校能够更准确地了解学生的学习情况、技能掌握程度和就业需求,从而为学生提供更加个性化的学习方
- 大数据分层存储架构:ODS、DWD、DWM与DWS详解
从零开始学习人工智能
大数据spark分布式
在大数据领域中,ODS、DWD、DWM和DWS代表了数据仓库的不同层次,它们共同构成了大数据的分层存储结构。这种结构的设计有助于提高数据查询效率,降低成本,并满足不同的业务需求。ODS(OperationalDataStore):操作数据存储层,主要存放原始的业务数据,是数据仓库的源头。它负责收集、存储和管理从各种业务系统中抽取的原始数据,为后续的数据处理和分析提供基础。DWD(DataWareh
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_