[Pytorch]PyTorch使用tensorboardX(转
文章来源: https://zhuanlan.zhihu.com/p/35675109
https://www.aiuai.cn/aifarm646.html
之前用pytorch是手动记录数据做图,总是觉得有点麻烦。学习了一下tensorboardX,感觉网上资料有点杂,记录一下重点。由于大多数情况只是看一下loss,lr,accu这些曲线,就先总结这些,什么images,audios以后需要再总结。
1.安装:有各种方法,docker安装,使用logger.py脚本调用感觉都不简洁。现在的tensorboardX感觉已经很好了,没什么坑。在命令行pip安装即可
pip install tensorboardX
2.调用
from tensorboardX import SummaryWriter
writer = SummaryWriter('log')
writer就相当于一个日志,保存你要做图的所有信息。第二句就是在你的项目目录下建立一个文件夹log,存放画图用的文件。刚开始的时候是空的。
训练的循环中,每次写入 图像名称,loss数值, n_iteration
writer.add_scalar('Train/Loss', loss.data[0], niter)
验证的循环中,写入预测的准确度即可:
writer.add_scalar('Test/Accu', correct/total, niter)
为了看得清楚一点,我把整个train_eval写一起了
def train_eval(epoch):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.data[0]
#每2000个batch显示一次当前的loss和accu
if i % 2000 == 1999:
print('[epoch: %d, batch: %5d] loss: %.3f' %
(epoch + 1, i+1, running_loss / 2000))
running_loss = 0.0
print('[epoch: %d, batch: %5d] Accu: %.3f' %(epoch + 1, i+1, correct/total))
#每10个batch画个点用于loss曲线
if i % 10 == 0:
niter = epoch * len(trainloader) + i
writer.add_scalar('Train/Loss', loss.data[0], niter)
#每500个batch全验证集检测,画个点用于Accu
if i % 500 == 0:
correct = 0
total = 0
for data in testloader:
images, target = data
res = net(Variable(images))
_, predicted = torch.max(res.data, 1)
total += labels.size(0)
correct += (predicted == target).sum()
writer.add_scalar('Test/Accu', correct/total, niter)
3.显示
会发现刚刚的log文件夹里面有文件了。在命令行输入如下,载入刚刚做图的文件(那个./log要写完整的路径)
tensorboard --logdir=./log
在浏览器输入:
http://0.0.0.0:6006/
就可以看到我们做的两个图了
tensorboardX
tensorboardX 可视化模块 - EN
tensorboardX 可视化模块 - ZH
tensorboardX 用于 Pytorch (Chainer, MXNet, Numpy 等) 的可视化库.
类似于 TensorFlow 的 tensorboard 模块.
tensorboard 采用简单的函数调用来写入 TensorBoard 事件.
- 支持
scalar
,image
,figure
,histogram
,audio
,text
,graph
,onnx_graph
,embedding
,pr_curve
和video
summaries. demo_graph.py
的要求:tensorboardX>=1.2,pytorch>=0.4.
安装:
sudo pip install tensorboardX
# 或
sudo pip install git+https://github.com/lanpa/tensorboardX
1. TensorBoardX 使用 Demo
demo.py
# demo.py
import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter
resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]
for n_iter in range(100):
dummy_s1 = torch.rand(1)
dummy_s2 = torch.rand(1)
# data grouping by `slash`
writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)
writer.add_scalars('data/scalar_group', {
'xsinx': n_iter * np.sin(n_iter),
'xcosx': n_iter * np.cos(n_iter),
'arctanx': np.arctan(n_iter)}, n_iter)
dummy_img = torch.rand(32, 3, 64, 64) # output from network
if n_iter % 10 == 0:
x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
writer.add_image('Image', x, n_iter)
dummy_audio = torch.zeros(sample_rate * 2)
for i in range(x.size(0)):
# amplitude of sound should in [-1, 1]
dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)
writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
for name, param in resnet18.named_parameters():
writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)
# needs tensorboard 0.4RC or later
writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)
dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]
features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))
# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()
运行以上 demo.py
代码:
python demo.py
然后,即可采用 TensorBoard 可视化(需要先安装过 TensorFlow):
tensorboard --logdir ./runs
在 demo.py
代码里主要给出了以下几个方面的信息:
SCALARS:data/scalar1,data/scalar2 和 data/scalar_group
writer.add_scalar('data/scalar1', dummy_s1[0], n_iter) writer.add_scalar('data/scalar2', dummy_s2[0], n_iter) writer.add_scalars('data/scalar_group', { 'xsinx': n_iter * np.sin(n_iter), 'xcosx': n_iter * np.cos(n_iter), 'arctanx': np.arctan(n_iter)}, n_iter)
IMAGES:
writer.add_image('Image', x, n_iter)
AUDIO:
writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)
DISTRIBUTIONS和 HISTOGRAMS:
for name, param in resnet18.named_parameters(): writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)
TEXT:
writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
PR CURVES:
# needs tensorboard 0.4RC or later writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)
PROJECTOR:
dataset = datasets.MNIST('mnist', train=False, download=False) images = dataset.test_data[:100].float() label = dataset.test_labels[:100] features = images.view(100, 784) writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))
(一直在计算 PCA 。。。)
2. TensorBoardX - Graph 可视化
demo_graph.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.autograd import Variable
from tensorboardX import SummaryWriter
class Net1(nn.Module):
def __init__(self):
super(Net1, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
self.bn = nn.BatchNorm2d(20)
def forward(self, x):
x = F.max_pool2d(self.conv1(x), 2)
x = F.relu(x) + F.relu(-x)
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = self.bn(x)
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
x = F.softmax(x, dim=1)
return x
class Net2(nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
x = F.log_softmax(x, dim=1)
return x
dummy_input = Variable(torch.rand(13, 1, 28, 28))
model = Net1()
with SummaryWriter(comment='Net1') as w:
w.add_graph(model, (dummy_input, ))
model = Net2()
with SummaryWriter(comment='Net2') as w:
w.add_graph(model, (dummy_input, ))
dummy_input = torch.Tensor(1, 3, 224, 224)
with SummaryWriter(comment='alexnet') as w:
model = torchvision.models.alexnet()
w.add_graph(model, (dummy_input, ))
with SummaryWriter(comment='vgg19') as w:
model = torchvision.models.vgg19()
w.add_graph(model, (dummy_input, ))
with SummaryWriter(comment='densenet121') as w:
model = torchvision.models.densenet121()
w.add_graph(model, (dummy_input, ))
with SummaryWriter(comment='resnet18') as w:
model = torchvision.models.resnet18()
w.add_graph(model, (dummy_input, ))
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
def forward(self, x):
return x * 2
model = SimpleModel()
dummy_input = (torch.zeros(1, 2, 3),)
with SummaryWriter(comment='constantModel') as w:
w.add_graph(model, dummy_input)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
# self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = F.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = F.relu(out)
return out
dummy_input = torch.rand(1, 3, 224, 224)
with SummaryWriter(comment='basicblock') as w:
model = BasicBlock(3, 3)
w.add_graph(model, (dummy_input, )) # , verbose=True)
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(
n_categories +
input_size +
hidden_size,
hidden_size)
self.i2o = nn.Linear(
n_categories +
input_size +
hidden_size,
output_size)
self.o2o = nn.Linear(hidden_size + output_size, output_size)
self.dropout = nn.Dropout(0.1)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, category, input, hidden):
input_combined = torch.cat((category, input, hidden), 1)
hidden = self.i2h(input_combined)
output = self.i2o(input_combined)
output_combined = torch.cat((hidden, output), 1)
output = self.o2o(output_combined)
output = self.dropout(output)
output = self.softmax(output)
return output, hidden
def initHidden(self):
return torch.zeros(1, self.hidden_size)
n_letters = 100
n_hidden = 128
n_categories = 10
rnn = RNN(n_letters, n_hidden, n_categories)
cat = torch.Tensor(1, n_categories)
dummy_input = torch.Tensor(1, n_letters)
hidden = torch.Tensor(1, n_hidden)
out, hidden = rnn(cat, dummy_input, hidden)
with SummaryWriter(comment='RNN') as w:
w.add_graph(rnn, (cat, dummy_input, hidden), verbose=False)
import pytest
print('expect error here:')
with pytest.raises(Exception) as e_info:
dummy_input = torch.rand(1, 1, 224, 224)
with SummaryWriter(comment='basicblock_error') as w:
w.add_graph(model, (dummy_input, )) # error
这里主要给出了自定义网络 Net1, 自定义网络 Net2, AlexNet, VGG19, DenseNet121, ResNet18, constantModel, basicblock 和 RNN 几个网络 graph 的例示.
运行 tensorboard --logdir=./runs/
可得到如下可视化,以 AlexNet 为例:
双击 Main Graph 中的 AlexNet 可以查看网络 Graph 的具体网络层,下载 PNG,如:
3. TensorBoardX - matplotlib 可视化
[demo_matplotlib.py]
import matplotlib.pyplot as plt
plt.switch_backend('agg')
fig = plt.figure()
c1 = plt.Circle((0.2, 0.5), 0.2, color='r')
c2 = plt.Circle((0.8, 0.5), 0.2, color='r')
ax = plt.gca()
ax.add_patch(c1)
ax.add_patch(c2)
plt.axis('scaled')
from tensorboardX import SummaryWriter
writer = SummaryWriter()
writer.add_figure('matplotlib', fig)
writer.close()
4. TensorBoardX - nvidia-smi 可视化
demo_nvidia_smi.py
"""
write gpu and (gpu) memory usage of nvidia cards as scalar
"""
from tensorboardX import SummaryWriter
import time
import torch
try:
import nvidia_smi
nvidia_smi.nvmlInit()
handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) # gpu0
except ImportError:
print('This demo needs nvidia-ml-py or nvidia-ml-py3')
exit()
with SummaryWriter() as writer:
x = []
for n_iter in range(50):
x.append(torch.Tensor(1000, 1000).cuda())
res = nvidia_smi.nvmlDeviceGetUtilizationRates(handle)
writer.add_scalar('nv/gpu', res.gpu, n_iter)
res = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)
writer.add_scalar('nv/gpu_mem', res.used, n_iter)
time.sleep(0.1)
5. TensorBoardX - embedding 可视化
demo_embedding.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from torch.autograd.variable import Variable
from tensorboardX import SummaryWriter
from torch.utils.data import TensorDataset, DataLoader
# EMBEDDING VISUALIZATION FOR A TWO-CLASSES PROBLEM
# 二分类问题的可视化
# just a bunch of layers
class M(nn.Module):
def __init__(self):
super(M, self).__init__()
self.cn1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3)
self.cn2 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3)
self.fc1 = nn.Linear(in_features=128, out_features=2)
def forward(self, i):
i = self.cn1(i)
i = F.relu(i)
i = F.max_pool2d(i, 2)
i = self.cn2(i)
i = F.relu(i)
i = F.max_pool2d(i, 2)
i = i.view(len(i), -1)
i = self.fc1(i)
i = F.log_softmax(i, dim=1)
return i
# 随机生成部分数据,加噪声
def get_data(value, shape):
data = torch.ones(shape) * value
# add some noise
data += torch.randn(shape)**2
return data
# dataset
# cat some data with different values
data = torch.cat((get_data(0, (100, 1, 14, 14)),
get_data(0.5, (100, 1, 14, 14))), 0)
# labels
labels = torch.cat((torch.zeros(100), torch.ones(100)), 0)
# generator
gen = DataLoader(TensorDataset(data, labels), batch_size=25, shuffle=True)
# network
m = M()
#loss and optim
loss = nn.NLLLoss()
optimizer = torch.optim.Adam(params=m.parameters())
# settings for train and log
num_epochs = 20
embedding_log = 5
writer = SummaryWriter(comment='mnist_embedding_training')
# TRAIN
for epoch in range(num_epochs):
for j, sample in enumerate(gen):
n_iter = (epoch * len(gen)) + j
# reset grad
m.zero_grad()
optimizer.zero_grad()
# get batch data
data_batch = Variable(sample[0], requires_grad=True).float()
label_batch = Variable(sample[1], requires_grad=False).long()
# FORWARD
out = m(data_batch)
loss_value = loss(out, label_batch)
# BACKWARD
loss_value.backward()
optimizer.step()
# LOGGING
writer.add_scalar('loss', loss_value.data.item(), n_iter)
if j % embedding_log == 0:
print("loss_value:{}".format(loss_value.data.item()))
# we need 3 dimension for tensor to visualize it!
out = torch.cat((out.data, torch.ones(len(out), 1)), 1)
writer.add_embedding(out,
metadata=label_batch.data,
label_img=data_batch.data,
global_step=n_iter)
writer.close()
t-SNE:
PCA:
6. TensorBoardX - multiple-embedding 可视化
demo_multiple_embedding.py
import math
import numpy as np
from tensorboardX import SummaryWriter
def main():
degrees = np.linspace(0, 3600 * math.pi / 180.0, 3600)
degrees = degrees.reshape(3600, 1)
labels = ["%d" % (i) for i in range(0, 3600)]
with SummaryWriter() as writer:
# Maybe make a bunch of data that's always shifted in some
# way, and that will be hard for PCA to turn into a sphere?
for epoch in range(0, 16):
shift = epoch * 2 * math.pi / 16.0
mat = np.concatenate([
np.sin(shift + degrees * 2 * math.pi / 180.0),
np.sin(shift + degrees * 3 * math.pi / 180.0),
np.sin(shift + degrees * 5 * math.pi / 180.0),
np.sin(shift + degrees * 7 * math.pi / 180.0),
np.sin(shift + degrees * 11 * math.pi / 180.0)
], axis=1)
writer.add_embedding(
mat=mat,
metadata=labels,
tag="sin",
global_step=epoch)
mat = np.concatenate([
np.cos(shift + degrees * 2 * math.pi / 180.0),
np.cos(shift + degrees * 3 * math.pi / 180.0),
np.cos(shift + degrees * 5 * math.pi / 180.0),
np.cos(shift + degrees * 7 * math.pi / 180.0),
np.cos(shift + degrees * 11 * math.pi / 180.0)
], axis=1)
writer.add_embedding(
mat=mat,
metadata=labels,
tag="cos",
global_step=epoch)
mat = np.concatenate([
np.tan(shift + degrees * 2 * math.pi / 180.0),
np.tan(shift + degrees * 3 * math.pi / 180.0),
np.tan(shift + degrees * 5 * math.pi / 180.0),
np.tan(shift + degrees * 7 * math.pi / 180.0),
np.tan(shift + degrees * 11 * math.pi / 180.0)
], axis=1)
writer.add_embedding(
mat=mat,
metadata=labels,
tag="tan",
global_step=epoch)
if __name__ == "__main__":
main()