【优化求解】基于GUI界面之蚁群算法优化求解【Matlab 181期】

一、简介

1 蚁群算法的提出
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。遗传算法在模式识别、神经网络、机器学习、工业优化控制、自适应控制、生物科学、社会科学等方面都得到应用。
2 算法的基本原理
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、源代码

clear all
clc
h=[1801 2201 1901 2401 2301 2101 2501 2401 2701 2601 2901
   1601 2010 2010 2601 2901 2010 2010 2501 2701 3010 2801
   2101 1901 2010 1901 1701 2010 2010 2010 2010 2501 2901
   1701 2010 2010 2010 1801 2010 2201 2010 2010 2010 2801
   2201 1801 2010 3101 2301 2401 1801 3101 3201 2301 2010
   1901 2101 2201 3010 2301 3010 3501 3101 2301 2601 2501
   1701 1401 2301 2901 2401 2801 1801 3501 2601 2010 3201
   2301 2501 2401 3101 3010 2601 3010 2301 3010 2501 2701
   2010 2201 2101 2010 2201 3010 2301 2501 2401 2010 2301
   2301 2201 2010 2301 2201 2201 2201 2501 2010 2801 2701
   2010 2301 2501 2201 2201 2010 2301 2601 2010 2501 2010];
h=h-1401;

for i=1:11
    for j=1:11
        h1(2*i-1,j)=h(i,j);
    end
end
function varargout = yiqun(varargin)
% YIQUN MATLAB code for yiqun.fig
%      YIQUN, by itself, creates a new YIQUN or raises the existing
%      singleton*.
%
%      H = YIQUN returns the handle to a new YIQUN or the handle to
%      the existing singleton*.
%
%      YIQUN('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in YIQUN.M with the given input arguments.
%
%      YIQUN('Property','Value',...) creates a new YIQUN or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before yiqun_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to yiqun_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help yiqun

% Last Modified by GUIDE v2.5 16-Jul-2016 10:18:28

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @yiqun_OpeningFcn, ...
                   'gui_OutputFcn',  @yiqun_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{
     1})
    gui_State.gui_Callback = str2func(varargin{
     1});
end

if nargout
    [varargout{
     1:nargout}] = gui_mainfcn(gui_State, varargin{
     :});
else
    gui_mainfcn(gui_State, varargin{
     :});
end
% End initialization code - DO NOT EDIT


% --- Executes just before yiqun is made visible.
function yiqun_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to yiqun (see VARARGIN)

% Choose default command line output for yiqun
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes yiqun wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = yiqun_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{
     1} = handles.output;


% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global z  k a

h=[1801 2201 1901 2401 2301 2101 2501 2401 2701 2601 2901
   1601 2010 2010 2601 2901 2010 2010 2501 2701 3010 2801
   2101 1901 2010 1901 1701 2010 2010 2010 2010 2501 2901
   1701 2010 2010 2010 1801 2010 2201 2010 2010 2010 2801
   2201 1801 2010 3101 2301 2401 1801 3101 3201 2301 2010
   1901 2101 2201 3010 2301 3010 3501 3101 2301 2601 2501
   1701 1401 2301 2901 2401 2801 1801 3501 2601 2010 3201
   2301 2501 2401 3101 3010 2601 3010 2301 3010 2501 2701
   2010 2201 2101 2010 2201 3010 2301 2501 2401 2010 2301
   2301 2201 2010 2301 2201 2201 2201 2501 2010 2801 2701
   2010 2301 2501 2201 2201 2010 2301 2601 2010 2501 2010];
h=h-1401;

for i=1:11
    for j=1:11
        h1(2*i-1,j)=h(i,j);
    end
end

三、运行结果

在这里插入图片描述

四、备注

完整代码或者代写添加QQ912100926
往期回顾>>>>>>
【优化求解】粒子群算法之充电站最优布局【Matlab 061期】
【优化求解】遗传算法之多旅行商问题【Matlab 062期】
【优化求解】遗传和模拟退火之三维装箱问题【Matlab 063期】
【优化求解】遗传算法之求最短路径【Matlab 064期】
【优化求解】粒子群之优化灰狼算法【Matlab 065期】
【优化求解】多目标之灰狼优化算法MOGWO 【Matlab 066期】
【优化求解】遗传算法之求解优化车辆发车间隔【Matlab 067期】
【优化求解】磷虾群算法简介【Matlab 068期】
【优化求解】差分进化算法简介【Matlab 069期】
【优化求解】约束优化之惩罚函数法简介【Matlab 070期】
【优化求解】改进灰狼算法之求解重油热解模型【Matlab 072期】
【优化求解】蚁群算法之配电网故障定位【Matlab 073期】
【优化求解】遗传算法之求解岛屿物资补给优化问题【Matlab 137期】
【优化求解】基于matlab冠状病毒群体免疫优化算法(CHIO)【Matlab 138期】
【优化求解】基于matlab之金鹰优化求解算法(GEO)【Matlab 139期】
【优化求解】基于GUI界面之BP神经网络优化求解【Matlab 179期】
【优化求解】基于GUI界面之遗传算法优化求解【Matlab 180期】

你可能感兴趣的:(matlab,优化求解)