- C#入门学习记录(五)轻松掌握条件分支与循环语句
FAREWELL00075
c#学习前端
前言编程就像给计算机写一份"烹饪指南",而条件分支和循环就是这份指南中的关键指令。想象你要教机器人做蛋糕:条件分支:"如果没有鸡蛋了,就去超市买"(做决定)循环:"重复搅拌面糊100次"(重复动作)本文会用简单易懂的语言和比喻,带你掌握C#中这两个核心概念。新手友好,放心食用!一、条件分支:让程序学会"做选择"1.if-else语句(基础版选择器)if(今天下雨){Console.WriteLin
- 停止过度提示:为什么简短的 AI 提示比长prompt更胜一筹
大模型之路
prompt人工智能prompt提示词
当下如何与AI高效互动成为众多用户关注的焦点,而提示词(prompt)的运用则是其中的关键。提示词作为与AI沟通的桥梁,其长度和内容的详略在很大程度上影响着AI的回应效果以及用户体验。近年来,“过度提示”现象逐渐引发热议,与之相对的,短提示词的优势开始受到更多关注。本文将深入探讨为何短AI提示词比长提示词更具优势。长提示词的困境信息过载与AI处理难题在与AI交互的过程中,许多人试图通过提供详尽的长
- 探索未来桌面应用的极限:QtWebEngine深度剖析与推荐
张姿桃Erwin
探索未来桌面应用的极限:QtWebEngine深度剖析与推荐去发现同类优质开源项目:https://gitcode.com/在追求极致用户体验和无缝互联网集成的时代,QtWebEngine犹如一座桥梁,将Chromium的强大力量与Qt框架的灵活性完美融合,为开发者打开了无限可能的大门。本文将深入解析这一开源宝藏,探讨其技术内核,应用场景,并揭示它的独特魅力。项目介绍QtWebEngine——是一
- 25. 策略模式
智想天开
设计模式详解策略模式bash开发语言
原文地址:策略模式更多内容请关注:智想天开1.策略模式简介策略模式(StrategyPattern)是一种行为型设计模式,它定义了一系列算法,将每一个算法封装起来,并使它们可以相互替换。策略模式让算法的变化独立于使用算法的客户。通过引入策略模式,可以在不修改客户端代码的情况下,动态地更改对象的行为。关键点:算法封装:将不同的算法封装到独立的策略类中。互换性:策略类可以相互替换,客户端可以根据需要选
- 奇迹科技:蓝牙网关赋能少儿篮球教育的创新融合案例研究
Ms_lan
蓝牙网关北京桂花网智慧体育
一、引言本文研究了福建奇迹运动体育科技有限公司(简称‘奇迹科技’)如何利用其创新产品体系和桂花网蓝牙网关M1500,与少儿篮球教育实现深度融合。重点分析其在提升教学效果、保障训练安全、优化个性化教学等方面的实践与成效,为教育机构和从业者提供参考。二、企业背景奇迹科技由国资上市企业浙数集团与福建省互联网十强企业来玩互娱联合注资成立,专注于数字化体育产业,业务包括数字体育科技研发、打造并运营少儿科技篮
- 微信小程序的旅游服务助手 景点 酒店 旅游规划的设计与实现
QQ1304979694
微信小程序旅游小程序
文章目录具体实现截图本项目支持的技术语言研究思路、方法和步骤本系统开发思路主要软件与实现手段系统可行性分析源码获取详细视频演示:文章底部获取博主联系方式!!!!java类核心代码部分展示微信小程序技术现状源码获取/详细视频演示具体实现截图本项目支持的技术语言前端开发框架:vue.js+uniapp数据库mysql版本不限微信开发者工具/hbuiderx数据库工具:Navicat/SQLyog等都可
- 生成对抗网络(GAN)的高级变体及在图像生成领域的创新实践
算法探索者
生成对抗网络计算机视觉人工智能
摘要生成对抗网络(GAN)自提出以来,在诸多领域取得了显著进展,尤其是在图像生成方面展现出强大的潜力。本文深入探讨了GAN的多种高级变体,如CycleGAN、StyleGAN等,详细分析它们在结构设计、训练机制上的创新之处,阐述其在生成高分辨率、多样化图像时具备的独特优势,并结合丰富的实际案例,展示这些变体在图像生成领域的卓越应用成果,为相关研究与应用提供全面且深入的参考。一、引言生成对抗网络(G
- 人工智能与网络信息技术的深度融合
鸭鸭鸭进京赶烤
学术会议人工智能AI编程ai机器人计算机视觉网络计算机网络
在当今时代,人工智能(AI)和网络信息技术正以前所未有的速度推动着社会变革。从通用人工智能(AGI)到具身智能的普及,AI不仅实现了技术上的飞跃,也在各个行业展现出巨大的应用潜力。随着技术的不断迭代,我们迎来了许多创新应用,例如AI在电子信息技术中的应用,通过算法优化与升级,显著提高了处理效率和准确性。网络信息技术同样在飞速发展。面向2030年的未来网络发展趋势表明,网络将支撑万亿级、人机物、全时
- 深度学习篇---对角矩阵&矩阵的秩&奇异矩阵
Ronin-Lotus
程序代码篇深度学习篇深度学习矩阵人工智能线性代数
文章目录前言一、对角矩阵(DiagonalMatrix)1.1定义1.2特性行列式运算简化1.3应用领域深度学习信号处理量子力学经济学二、矩阵的秩(RankofaMatrix)2.1定义2.2特性满秩降秩影响2.3应用领域深度学习图像压缩推荐系统控制理论三、奇异矩阵(SingularMatrix)3.1定义3.2特性秩不足行列式为零3.3应用领域深度学习正则化损失函数结构工程统计学数值计算四、跨领
- 软件架构设计关键点:平衡高可用、性能、扩展性及成本的系统化实践
yinhezhanshen
程序人生系统架构
在数字化转型的浪潮中,软件系统已成为企业运营的核心支撑。从电商平台的秒杀活动到金融系统的实时交易,从物联网设备的百万级连接到政务服务的全天候响应,软件架构的设计质量直接决定了系统能否在复杂环境中稳定运行。本文将从高可用性、高性能、可扩展性、安全性、成本控制、规模承载和弹性伸缩七个维度,剖析现代软件架构设计的核心要点。一、高可用性:构建业务连续性的基石冗余设计:采用主从复制、多活数据中心架构(如
- 统一的视频动作模型
三谷秋水
计算机视觉机器学习人工智能计算机视觉深度学习机器学习人工智能
25年3月来自斯坦福大学的论文“UnifiedVideoActionModel”。统一的视频和动作模型对机器人技术具有重大意义,其中视频为动作预测提供丰富的场景信息,而动作为视频预测提供动态信息。然而,有效地结合视频生成和动作预测仍然具有挑战性,当前基于视频生成的方法在动作准确性和推理速度方面难以与直接策略学习的性能相匹配。为了弥补这一差距,引入统一的视频动作模型(UVA),它联合优化视频和动作预
- DeepSeek、Grok 与 ChatGPT 三巨头:技术架构与应用场景的全方位解析
云策量化
Deepseekchatgptdeepseekgrok
前言在当今人工智能领域,DeepSeek、Grok和ChatGPT作为语言模型的三巨头,各自凭借独特的技术架构和广泛的应用场景,在自然语言处理领域占据着重要地位。本文将对这三款模型的技术架构和应用场景进行全方位解析,以期为读者提供深入的了解和有价值的参考。一、技术架构(一)DeepSeekDeepSeek是由DeepSeek团队开发的一款大型语言模型,其技术架构基于深度学习中的Transforme
- Temu跨境新风口:2025年开店必知的账号安全指南
香菜9527
安全
近年来,Temu凭借其强大的供货链体系与超低价策略,成为跨境电商行业的新风口,吸引众多卖家入驻。随着平台竞争加剧,账号安全问题逐渐成为卖家面临的核心挑战。账号被封、资金冻结、违规操作等问题频发,轻则影响销量,重则导致店铺损失惨重。因此,了解并遵循安全运营规则,是每位卖家成功的关键。本文将为你详细解析Temu开店过程中必须掌握的账号安全知识,并提供实操建议,助你稳健运营。1.Temu账号安全为何重要
- 如何避免Bug跟踪系统混乱
管理前沿
运维人工智能大数据
流程规范化、工具集成化、沟通透明化。其中流程规范化通过明确每个环节的责任分工、标准化Bug报告和处理流程,有效减少混乱和重复劳动,确保Bug跟踪系统高效运转。企业通过数据分析发现,采用标准化流程后Bug处理效率可提升30%以上,这为软件质量控制提供了坚实保障。一、BUG跟踪系统的基本概念与重要性Bug跟踪系统是一种用于记录、管理和解决软件缺陷的工具和流程。它通过集中存储Bug报告、分类处理问题,并
- Gradle 打包调试终极指南:全维度日志输出与问题定位
有时很滑稽
Androidandroid
Gradle打包调试终极指南:全维度日志输出与问题定位一、Gradle日志级别全解析1.1日志级别控制参数#按日志详细程度递增排序:./gradlewassembleDebug-q#QUIET-仅错误信息./gradlewassembleDebug#LIFECYCLE-默认级别(任务执行概览)./gradlewassembleDebug-i#INFO-显示任务输入/输出变化./gradlewass
- 侯捷 C++ 课程学习笔记:深入掌握 C++ 高阶特性 —— 实践与心得分享
清水白石008
C++学习笔记课程教程c++学习笔记
侯捷C++课程学习笔记:深入掌握C++高阶特性——实践与心得分享自从开始接触侯捷C++系列精品课程以来,我对C++语言有了全新的认识与深入理解。这套课程不仅系统地梳理了C++的基础知识,更从实际案例中展示了许多高阶特性和工程实战技巧。作为一名长期从事C++开发的专业人士,我深深感受到侯捷老师讲解中那种由浅入深、逻辑严密的魅力,也正是这种教学风格让我在短时间内掌握了不少难以琢磨的知识点。今天,我将结
- 探索AI模型的巅峰之战:ChatGPT、DeepSeek与Grok 3,谁才是最强?
温暖阳光阿斌
人工智能chatgpt
近年来,人工智能领域正处于一场高速迭代的革命中。大型语言模型(LLMs)如ChatGPT、DeepSeek和Grok3纷纷亮相,各展所长,为人们带来了前所未有的体验。在这场"谁是最强"的竞争中,每一方都展现出了令人惊叹的能力和独特的优势。然而,这些模型之间的差异和特点,究竟是什么?它们各自的优势在哪里?又有哪些隐藏的短板?本文将带您深入了解这三位AI巨头的亮点与争议,共同探讨它们在AI领域的位置,
- OpenCV 4.2.0与扩展模块安装与应用指南
土城三富
本文还有配套的精品资源,点击获取简介:OpenCV4.2.0是一个先进的计算机视觉库,包含了图像处理、计算机视觉和机器学习算法。本压缩包包含OpenCV核心库和扩展模块(opencv_contrib),版本均为4.2.0。该版本引入了性能增强、API优化以及对深度学习框架和硬件加速技术的更新支持。扩展模块提供了额外的实验性算法和功能,有助于研究和开发新算法。指南详细介绍了如何安装和配置这些库,并提
- SQLAlchemy 的内存消耗
ftpeak
DBPython数据库pythonsql
为何要研究SQLAlchemy的内存消耗问题?因为SQLAlchemy在应用中,绝大多数问题体现在应用人员对SQLAlchemy的内存消耗问题不认知、不重视、不处理,最终造成整个系统的大问题,使SQLAlchemy的性能大打折扣,最终影响了SQLAlchemy的在您手中的可用性。通过以下解决问题的手法,可以有效控制SQLAlchemy的内存消耗,提高应用程序的性能和稳定性。1.连接池相关内存消耗原
- matlab两矩阵相似性,两个矩阵同时相似对角化MATLAB程序.docx
weixin_39870664
matlab两矩阵相似性
两个矩阵同时相似对角化MATLAB程序摘要:使用Matlab语言设计出实现两个复矩阵同时相似对角化的计算机程序。关键词:同时相似对角化;Matlab;程序矩阵对角化是重要的数学方法,但因其计算过程繁琐,人们往往望之生畏,尤其是多个矩阵同时对角化问题,因此本文设计出判断及计算两个复矩阵能否同时相似对角化的Matlab程序,用此能够方便地解决两个复矩阵同时相似对角化问题。1.理论基础定义[1]:设A、
- java队列实现限流_如何使用队列实现微服务限流算法?
纽太普
java队列实现限流
队列在平时开发中可能是出现频率最高的数据结构之一了,但是大部分情况下,我们都是用别人已经实现好的,比如kafka,比如redis里的list,以至于让人怀疑为什么还要去学习队列呢?希望今天的内容可以给你一些启发。什么是队列为了整个文章的完整性,我们还是来介绍一下什么是队列。我们举个生活中常见的案例,假设你在周杰伦的奶茶店买奶茶,由于人很多,为了保持公平和秩序,你被要求排队,最先来的人排到最前面,这
- Spring的JavaWeb三层架构
可问 可问春风
JAVASSM框架spring架构java
Spring三层架构的核心注解及协作在Spring的JavaWeb三层架构中,通过分层注解实现职责分离和组件管理,各层(表现层、业务层、数据访问层)的协作基于组件扫描和依赖注入(DI)机制。以下是各层的核心注解及其协作关系:1.分层架构与对应注解层级职责注解关联技术表现层处理用户请求,返回响应@Controller/@RestControllerSpringMVC,RESTfulAPI业务层实现业
- 《代码拯救世界》
可问 可问春风
重生之我来csdn写小说网络计算机小说网络安全
《代码拯救世界》第一章:神秘的黑客组织“全球多个银行系统遭受黑客攻击,资金被大量转移,损失高达数十亿美元……”新闻播报员的声音在办公室里回荡,小陈的手心已经捏出了汗。作为一名网络安全工程师,他知道这次攻击的严重性远超普通黑客行为。“老李,你看这个。”小陈把一份报告递给同事,“攻击手法非常专业,利用了多个零日漏洞(未被公开的漏洞),而且目标明确,显然是早有预谋。”老李推了推眼镜,眉头紧锁:“这不像普
- 一文说清预训练与微调:AI的双重训练法则
TGITCIC
AI-大模型的落地之道人工智能深度学习
什么是预训练?预训练是大型语言模型训练的第一步。它在资金和计算能力的支持下,通过深入分析大量的文本数据,使模型建立起语言的基本构架。在这一阶段,模型通过学习海量的书籍、文章和网页,识别出语言的语法、句法和词汇规律。这就如同一名学生接受通识教育,他并没有专注于某一门学科,而是获取了多方面的知识。自回归语言建模和掩码语言建模是预训练中常见的两种方法。前者在逐步构建文本的连贯性时,通过预测下一单词的方式
- OpenCV ML 模块使用指南
ice_junjun
OpenCVopencv人工智能计算机视觉
一、模块概述OpenCV的ML模块提供了丰富的机器学习算法,可用于解决各种计算机视觉和数据分析问题。本指南将详细介绍该模块中主要的机器学习算法,包括支持向量机(SVM)、K均值聚类(K-Means)和神经网络(ANN),并结合图像分类和聚类分析这两个典型应用场景进行代码实现与解释。二、主要函数及类详解(一)支持向量机(SVM):cv.ml.SVM_create()功能支持向量机(SVM)是一种强大
- SQLAdmin 教程:安装与配置指南
俞淑瑜Sally
SQLAdmin教程:安装与配置指南sqladminSQLAlchemyAdminforFastAPIandStarlette项目地址:https://gitcode.com/gh_mirrors/sq/sqladmin1.项目目录结构及介绍在sqladmin开源项目中,主要的目录结构如下:docs:存放项目的文档资料,包括Markdown格式的说明文件。sqladmin:核心代码库,包含主要的功
- 探索数据库管理的新纪元:SQLAdmin - 易用的 SQLAlchemy 管理界面
孔祯拓Belinda
探索数据库管理的新纪元:SQLAdmin-易用的SQLAlchemy管理界面sqladminSQLAlchemyAdminforFastAPIandStarlette项目地址:https://gitcode.com/gh_mirrors/sq/sqladmin项目简介在数据管理和Web开发的世界里,SQLAdmin是一个创新性的开源项目,它为SQLAlchemy模型提供了一个灵活且直观的后台管理界
- RDMA通信协议中rdma_resolve_addr函数的实现与应用
109702008
#C语言编程网络人工智能网络linux
在RDMA(远程直接内存访问)通信中,rdma_resolve_addr函数是一个关键的API,用于将目标IP地址解析为RDMA地址,从而建立RDMA连接。在InfiniBand源码包中,mlnx-ofed-kernel_4.9.orig.tar.gz和librdmacm_41mlnx1.orig.tar.gz都提供了rdma_resolve_addr函数,但它们的实现代码不同,且服务于不同的层次
- Linux内核网络设备注册与地址族协同机制深度解析
109702008
#C语言编程网络网络人工智能c语言
在Linux网络子系统中,网络设备注册与地址族(AddressFamily)的协同工作机制是构建高性能网络应用的核心基础。本文将以IPoIB(InfiniBandoverIP)驱动为例,深入解析register_netdev函数在设备注册中的作用,地址族的选择对网络通信的影响,以及如何通过自定义协议实现灵活的网络控制。一、网络设备注册机制解析1.1register_netdev的核心作用regis
- 【001安卓开发方案调研】之Java+Gradle+XML 原生安卓开发
ThinkPet
移动app开发androidjavaxml
基于2025年国内安卓开发领域的最新动态,结合Java+Gradle+XML技术组合的生态发展,以下是综合分析:一、技术成熟度评估1.核心架构稳定性Java语言基础作为安卓开发官方支持语言,Java在国内拥有超过15年的技术积累,字节码编译机制与安卓ART虚拟机的深度适配,使其在内存管理、多线程处理等场景表现稳定。主流应用如微信、支付宝均保留Java核心模块。Gradle构建体系Gradle8.5
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc