在上文的代码中修改只是增加存储选项
import sys
import cv2
def CatchPICFromVideo(path_name, window_name="GET_FACE", camera_idx=0, catch_pic_num=1000):
cv2.namedWindow(window_name)
# 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
cap = cv2.VideoCapture(camera_idx,cv2.CAP_DSHOW)
# 告诉OpenCV使用人脸识别分类器
classfier = cv2.CascadeClassifier("D:\\anaconda\Lib\site-packages\opencv\\build\etc\haarcascades\haarcascade_frontalface_default.xml")
# 识别出人脸后要画的边框的颜色,RGB格式
color = (0, 255, 0)
num = 0
while cap.isOpened():
ok, frame = cap.read() # 读取一帧数据
print(type(frame))
if not ok:
break
grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 将当前桢图像转换成灰度图像
# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects) > 0: # 大于0则检测到人脸
for faceRect in faceRects: # 单独框出每一张人脸
x, y, w, h = faceRect
# 将当前帧保存为图片
img_name = '%s/%d.jpg ' % (path_name, num)
image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
cv2.imwrite(img_name, image)
num += 1
if num > (catch_pic_num): # 如果超过指定最大保存数量退出循环
break
# 画出矩形框
cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)
# 显示当前捕捉到了多少人脸图片了,这样站在那里被拍摄时心里有个数,不用两眼一抹黑傻等着
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(frame, 'num:%d' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)
# 超过指定最大保存数量结束程序
if num > (catch_pic_num): break
# 显示图像
cv2.imshow(window_name, frame)
c = cv2.waitKey(10)
if c & 0xFF == ord('q'):
break
# 释放摄像头并销毁所有窗口
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
CatchPICFromVideo('C:\\Users\\zxy\\PycharmProjects\\tf\\data\\zzz')
在最后修改存储的位置,大概准备1000张自己的图片,更改位置,存储另外一个人1000张图片。
OpenCV对人脸的识别也不是100%准确,因此,我们截取的人脸图像中会有些不合格的。在我截取的1000张人脸中大约有几十张这样的,要想确保模型可靠,必须要把这样的图片去掉。这个活只能手动了,没办法。幸运的是,数据量不大,不会耽误太多时间的。最后,请确保程序所在路径下已经有了data/me和data/other两个文件夹及各1000张人脸图片