前言
在实际开发中,有时会遇到这样的场景:主任务需要等待若干子任务完成后,再进行后续的操作。这时可以用join或者本文的CountDownLatch实现。它们的区别在于CountDownLatch更加灵活。比如,子任务的工作分为两个阶段,主任务只需子任务完成第一个阶段即可开始主任务,无需等第二个阶段完成。这种场景join就无法做到,CountDownLatch就可以实现。下面是实例代码。
import java.util.concurrent.CountDownLatch;
public class CountDownLatchDemo {
public static void main(String[] args) throws InterruptedException {
CountDownLatch countDownLatch = new CountDownLatch(2);
Worker worker1 = new Worker("worker1", countDownLatch);
Worker worker2 = new Worker("worker2", countDownLatch);
worker1.start();
worker2.start();
System.out.println("main task wait for work1 and work2 finish their stage 1");
countDownLatch.await();
System.out.println("main task begin to work");
Thread.sleep(3000);
System.out.println("main task finished");
}
static class Worker extends Thread {
private final CountDownLatch count;
public Worker(String name, CountDownLatch count) {
super.setName(name);
this.count = count;
}
@Override
public void run() {
try {
Thread.sleep(5000);
System.out.println(Thread.currentThread().getName() + " stage 1 finished");
count.countDown();
Thread.sleep(5000);
System.out.println(Thread.currentThread().getName() + " stage 2 finished");
} catch (InterruptedException e) {
// ignore
}
}
}
}
运行结果如下:
主线程等待work1和work2完成它们的第一个阶段任务后,就开始工作,无需等待第二个阶段也完成。而join只能等待子线程整个run()执行完毕才能往后执行,因此CountDownLatch更加灵活。
实现原理
从CountDownLatch的命名可猜测,它内部应该用了一个计数器,每当子线程调用countDown()方法时,计数器就减1,减到0时,主线程就会从调用await()阻塞处苏醒返回。
先来看看构造方法:
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
其中Sync是它的内部类,实现了AQS接口。
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
// 计数器为0,则获取锁成功,可以从await()返回
// 否则需要等待
return (getState() == 0) ? 1 : -1;
}
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
// 计数器减1
int nextc = c-1;
if (compareAndSetState(c, nextc))
// 减到0时会unpark唤醒阻塞在await()的线程
return nextc == 0;
}
}
}
可以看到,它是一个共享锁实现,多个线程通过Sync来同步计数器count的值。
再来看常用的await()和countDown()方法:
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
await()调用的是AQS中的模板方法:
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
// 调用子类Sync的tryAcquireShared方法,如果共享式获取锁失败,doAcquireSharedInterruptibly里面会让当前线程在队列里阻塞等待获取锁。
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
public void countDown() {
sync.releaseShared(1);
}
countDown调用的也是AQS中的模板方法:
public final boolean releaseShared(int arg) {
// 调用子类Sync的tryReleaseShared()共享式地释放锁,
// 计数器减为0时,doReleaseShared里面会唤醒等待在await()方法处的线程。
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
参考资料:
《Java并发编程之美》