有关聊天机器人的近两年的优秀论文和开源程序

本文属于研究聊天机器人,前沿学术内容;附带大量 GitHub 程序,先收藏!

示例程序

Practical Neural Networks for NLP

  • intro: EMNLP 2016
  • github: https://github.com/clab/dynet_tutorial_examples

Structured Neural Networks for NLP: From Idea to Code

  • slides: https://github.com/neubig/yrsnlp-2016/blob/master/neubig16yrsnlp.pdf
  • github: https://github.com/neubig/yrsnlp-2016

Understanding Deep Learning Models in NLP

http://nlp.yvespeirsman.be/blog/understanding-deeplearning-models-nlp/

Deep learning for natural language processing, Part 1

https://softwaremill.com/deep-learning-for-nlp/

神经网络模型

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4VRLU1ok-1600087303353)(/assets/dl-materials/Unifying_Visual-Semantic_Embeddings_with_Multimodal_Neural_Language_Models.png)]

  • arxiv: http://arxiv.org/abs/1411.2539
  • github: https://github.com/ryankiros/visual-semantic-embedding
  • results: http://www.cs.toronto.edu/~rkiros/lstm_scnlm.html
  • demo: http://deeplearning.cs.toronto.edu/i2t

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

  • arxiv: http://arxiv.org/abs/1503.00075
  • github: https://github.com/stanfordnlp/treelstm
  • github(Theano): https://github.com/ofirnachum/tree_rnn

Visualizing and Understanding Neural Models in NLP

  • arxiv: http://arxiv.org/abs/1506.01066
  • github: https://github.com/jiweil/Visualizing-and-Understanding-Neural-Models-in-NLP

Character-Aware Neural Language Models

  • paper: http://arxiv.org/abs/1508.06615
  • github: https://github.com/yoonkim/lstm-char-cnn

Skip-Thought Vectors

  • paper: http://arxiv.org/abs/1506.06726
  • github: https://github.com/ryankiros/skip-thoughts

A Primer on Neural Network Models for Natural Language Processing

  • arxiv: http://arxiv.org/abs/1510.00726

Character-aware Neural Language Models

  • arxiv: http://arxiv.org/abs/1508.06615

Neural Variational Inference for Text Processing

  • arxiv: http://arxiv.org/abs/1511.06038
  • notes: http://dustintran.com/blog/neural-variational-inference-for-text-processing/
  • github: https://github.com/carpedm20/variational-text-tensorflow
  • github: https://github.com/cheng6076/NVDM

Sequence to Sequence Learning

Generating Text with Deep Reinforcement Learning

  • intro: NIPS 2015
  • arxiv: http://arxiv.org/abs/1510.09202

MUSIO: A Deep Learning based Chatbot Getting Smarter

  • homepage: http://ec2-204-236-149-143.us-west-1.compute.amazonaws.com:9000/
  • github(Torch7): https://github.com/deepcoord/seq2seq

Translation

Learning phrase representations using rnn encoder-decoder for statistical machine translation

  • intro: GRU. EMNLP 2014
  • arxiv: http://arxiv.org/abs/1406.1078

Neural Machine Translation by Jointly Learning to Align and Translate

  • intro: ICLR 2015
  • arxiv: http://arxiv.org/abs/1409.0473
  • github: https://github.com/lisa-groundhog/GroundHog

Multi-Source Neural Translation

  • intro: “report up to +4.8 Bleu increases on top of a very strong attention-based neural translation model.”
  • arxiv: [Multi-Source Neural Translation](Multi-Source Neural Translation)
  • github(Zoph_RNN): https://github.com/isi-nlp/Zoph_RNN
  • video: http://research.microsoft.com/apps/video/default.aspx?id=260336

Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism

  • arxiv: http://arxiv.org/abs/1601.01073
  • github: https://github.com/nyu-dl/dl4mt-multi
  • notes: https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/multi-way-nmt-shared-attention.md

Modeling Coverage for Neural Machine Translation

  • arxiv: http://arxiv.org/abs/1601.04811

A Character-level Decoder without Explicit Segmentation for Neural Machine Translation

  • arxiv: http://arxiv.org/abs/1603.06147
  • github: https://github.com/nyu-dl/dl4mt-cdec

NEMATUS: Attention-based encoder-decoder model for neural machine translation

  • github: https://github.com/rsennrich/nematus

Variational Neural Machine Translation

  • intro: EMNLP 2016
  • arxiv: https://arxiv.org/abs/1605.07869
  • github: https://github.com/DeepLearnXMU/VNMT

Neural Network Translation Models for Grammatical Error Correction

  • arxiv: http://arxiv.org/abs/1606.00189

Linguistic Input Features Improve Neural Machine Translation

  • arxiv: http://arxiv.org/abs/1606.02892
  • github: https://github.com/rsennrich/nematus

Sequence-Level Knowledge Distillation

  • intro: EMNLP 2016
  • arxiv: http://arxiv.org/abs/1606.07947
  • github: https://github.com/harvardnlp/nmt-android

Neural Machine Translation: Breaking the Performance Plateau

  • slides: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf

Tips on Building Neural Machine Translation Systems

  • github: https://github.com/neubig/nmt-tips

Semi-Supervised Learning for Neural Machine Translation

  • intro: ACL 2016. Tsinghua University & Baidu Inc
  • arxiv: http://arxiv.org/abs/1606.04596

EUREKA-MangoNMT: A C++ toolkit for neural machine translation for CPU

  • github: https://github.com/jiajunzhangnlp/EUREKA-MangoNMT

Deep Character-Level Neural Machine Translation

  • github: https://github.com/SwordYork/DCNMT

Neural Machine Translation Implementations

  • github: https://github.com/jonsafari/nmt-list

Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

  • arxiv: http://arxiv.org/abs/1609.08144v1

Learning to Translate in Real-time with Neural Machine Translation

  • arxiv: https://arxiv.org/abs/1610.00388

Is Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions

  • arxiv: https://arxiv.org/abs/1610.01108
  • github: https://github.com/emjotde/amunmt

Fully Character-Level Neural Machine Translation without Explicit Segmentation

  • arxiv: https://arxiv.org/abs/1610.03017
  • github: https://github.com/nyu-dl/dl4mt-c2c

Navigational Instruction Generation as Inverse Reinforcement Learning with Neural Machine Translation

  • arxiv: https://arxiv.org/abs/1610.03164

Neural Machine Translation in Linear Time

  • intro: ByteNet
  • arxiv: https://arxiv.org/abs/1610.10099
  • github: https://github.com/paarthneekhara/byteNet-tensorflow
  • github(Tensorflow): https://github.com/buriburisuri/ByteNet

Neural Machine Translation with Reconstruction

  • arxiv: https://arxiv.org/abs/1611.01874

A Convolutional Encoder Model for Neural Machine Translation

  • intro: Facebook AI Research
  • arxiv: https://arxiv.org/abs/1611.02344

Toward Multilingual Neural Machine Translation with Universal Encoder and Decoder

  • arxiv: https://arxiv.org/abs/1611.04798

MXNMT: MXNet based Neural Machine Translation

  • github: https://github.com/magic282/MXNMT

Doubly-Attentive Decoder for Multi-modal Neural Machine Translation

  • intro: Dublin City University & Trinity College Dublin
  • arxiv: https://arxiv.org/abs/1702.01287

Massive Exploration of Neural Machine Translation Architectures

  • intro: Google Brain
  • arxiv: https://arxiv.org/abs/1703.03906
  • github: https://github.com/google/seq2seq/

Depthwise Separable Convolutions for Neural Machine Translation

  • intro: Google Brain & University of Toronto
  • arxiv: https://arxiv.org/abs/1706.03059

自动摘要

Extraction of Salient Sentences from Labelled Documents

  • arxiv: http://arxiv.org/abs/1412.6815
  • github: https://github.com/mdenil/txtnets
  • notes: https://github.com/jxieeducation/DIY-Data-Science/blob/master/papernotes/2014/06/model-visualizing-summarising-conv-net.md

A Neural Attention Model for Abstractive Sentence Summarization

  • intro: EMNLP 2015. Facebook AI Research
  • arxiv: http://arxiv.org/abs/1509.00685
  • github: https://github.com/facebook/NAMAS
  • github(TensorFlow): https://github.com/carpedm20/neural-summary-tensorflow

A Convolutional Attention Network for Extreme Summarization of Source Code

  • homepage: http://groups.inf.ed.ac.uk/cup/codeattention/
  • arxiv: http://arxiv.org/abs/1602.03001
  • github: https://github.com/jxieeducation/DIY-Data-Science/blob/master/papernotes/2016/02/conv-attention-network-source-code-summarization.md

Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond

  • intro: BM Watson & Université de Montréal
  • arxiv: http://arxiv.org/abs/1602.06023

textsum: Text summarization with TensorFlow

  • blog: https://research.googleblog.com/2016/08/text-summarization-with-tensorflow.html
  • github: https://github.com/tensorflow/models/tree/master/textsum

How to Run Text Summarization with TensorFlow

  • blog: https://medium.com/@surmenok/how-to-run-text-summarization-with-tensorflow-d4472587602d#.mll1rqgjg
  • github: https://github.com/surmenok/TextSum

阅读理解

Text Comprehension with the Attention Sum Reader Network

Text Understanding with the Attention Sum Reader Network

  • intro: ACL 2016
  • arxiv: https://arxiv.org/abs/1603.01547
  • github: https://github.com/rkadlec/asreader

A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task

  • arxiv: http://arxiv.org/abs/1606.02858
  • github: https://github.com/danqi/rc-cnn-dailymail

Consensus Attention-based Neural Networks for Chinese Reading Comprehension

  • arxiv: http://arxiv.org/abs/1607.02250
  • dataset(“HFL-RC”): http://hfl.iflytek.com/chinese-rc/

Separating Answers from Queries for Neural Reading Comprehension

  • arxiv: http://arxiv.org/abs/1607.03316
  • github: https://github.com/dirkweissenborn/qa_network

Attention-over-Attention Neural Networks for Reading Comprehension

  • arxiv: http://arxiv.org/abs/1607.04423
  • github: https://github.com/OlavHN/attention-over-attention

Teaching Machines to Read and Comprehend CNN News and Children Books using Torch

  • github: https://github.com/ganeshjawahar/torch-teacher

Reasoning with Memory Augmented Neural Networks for Language Comprehension

  • arxiv: https://arxiv.org/abs/1610.06454

Bidirectional Attention Flow: Bidirectional Attention Flow for Machine Comprehension

  • project page: https://allenai.github.io/bi-att-flow/
  • github: https://github.com/allenai/bi-att-flow

NewsQA: A Machine Comprehension Dataset

  • arxiv: https://arxiv.org/abs/1611.09830
  • dataset: http://datasets.maluuba.com/NewsQA
  • github: https://github.com/Maluuba/newsqa

Gated-Attention Readers for Text Comprehension

  • intro: CMU
  • arxiv: https://arxiv.org/abs/1606.01549
  • github: https://github.com/bdhingra/ga-reader

Get To The Point: Summarization with Pointer-Generator Networks

  • intro: ACL 2017. Stanford University & Google Brain
  • arxiv: https://arxiv.org/abs/1704.04368
  • github: https://github.com/abisee/pointer-generator

问答系统

Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks

  • intro: Facebook AI Research
  • arxiv: http://arxiv.org/abs/1502.05698v1
  • github: https://github.com/facebook/bAbI-tasks

VQA: Visual Question Answering

  • intro: ICCV 2015
  • arxiv: http://arxiv.org/abs/1505.00468
  • homepage: http://visualqa.org/

Ask Your Neurons: A Neural-based Approach to Answering Questions about Images

  • intro: ICCV 2015
  • arxiv: http://arxiv.org/abs/1505.01121
  • project: https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/visual-turing-challenge/
  • video: https://www.youtube.com/watch?v=QZEwDcN8ehs&hd=1

Exploring Models and Data for Image Question Answering

  • arxiv: http://arxiv.org/abs/1505.02074
  • gtihub(Tensorflow): https://github.com/paarthneekhara/neural-vqa-tensorflow
  • github(Python+Keras): https://github.com/ayushoriginal/NeuralNetwork-ImageQA

Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering

  • arxiv: http://arxiv.org/abs/1505.05612

Teaching Machines to Read and Comprehend

  • intro: Google DeepMind
  • arxiv: http://arxiv.org/abs/1506.03340
  • github: https://github.com/deepmind/rc-data
  • github(Theano/Blocks): https://github.com/thomasmesnard/DeepMind-Teaching-Machines-to-Read-and-Comprehend
  • github(Tensorflow): https://github.com/carpedm20/attentive-reader-tensorflow

Neural Module Networks

  • intro: CVPR 2016
  • arxiv: http://arxiv.org/abs/1511.02799
  • github: https://github.com/jacobandreas/nmn2

Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction

有关聊天机器人的近两年的优秀论文和开源程序_第1张图片

  • arxiv: http://arxiv.org/abs/1511.05756
  • github: https://github.com/HyeonwooNoh/DPPnet
  • project page: http://cvlab.postech.ac.kr/research/dppnet/

Neural Generative Question Answering

  • arxiv: http://arxiv.org/abs/1512.01337

Stacked Attention Networks for Image Question Answering

  • arxiv: http://arxiv.org/abs/1511.02274
  • github: https://github.com/abhshkdz/neural-vqa-attention

Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering

  • arxiv: http://arxiv.org/abs/1511.05234

Simple Baseline for Visual Question Answering

  • intro: Facebook AI Research. Bag-of-word
  • arxiv: http://arxiv.org/abs/1512.02167
  • github: https://github.com/metalbubble/VQAbaseline
  • demo: http://visualqa.csail.mit.edu/

MovieQA: Understanding Stories in Movies through Question-Answering

  • intro: CVPR 2016
  • project page: http://movieqa.cs.toronto.edu/home/
  • arxiv: http://arxiv.org/abs/1512.02902
  • gtihub: https://github.com/makarandtapaswi/MovieQA_CVPR2016/

Deeper LSTM+ normalized CNN for Visual Question Answering

  • intro: “This current code can get 58.16 on Open-Ended and 63.09 on Multiple-Choice on test-standard split”
  • github: https://github.com/VT-vision-lab/VQA_LSTM_CNN

A Neural Network for Factoid Question Answering over Paragraphs

  • project page: http://cs.umd.edu/~miyyer/qblearn/
  • paper: https://cs.umd.edu/~miyyer/pubs/2014_qb_rnn.pdf
  • code+data: https://cs.umd.edu/~miyyer/qblearn/qanta.tar.gz

Learning to Compose Neural Networks for Question Answering

  • intro: NAACL 2016 Best paper
  • arxiv: http://arxiv.org/abs/1601.01705

Generating Natural Questions About an Image

  • arxiv: http://arxiv.org/abs/1603.06059

Question Answering on Freebase via Relation Extraction and Textual Evidence

  • intro: ACL 2016
  • arxiv: https://arxiv.org/abs/1603.00957
  • github: https://github.com/syxu828/QuestionAnsweringOverFB

Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus

  • arxiv: http://arxiv.org/abs/1603.06807

Character-Level Question Answering with Attention

  • arxiv: http://arxiv.org/abs/1604.00727
  • comment(by @Wenpeng_Yin): “fancy model with minor improvement”

A Focused Dynamic Attention Model for Visual Question Answering

  • arxiv: http://arxiv.org/abs/1604.01485

Visual Question Answering Literature Survey

  • blog: http://iamaaditya.github.io/research/literature/

The DIY Guide to Visual Question Answering

  • github: https://github.com/jxieeducation/DIY-Data-Science/blob/master/research/visual_qa.md

Question Answering via Integer Programming over Semi-Structured Knowledge

  • arxiv: http://arxiv.org/abs/1604.06076
  • github: https://github.com/allenai/tableilp
  • youtube: https://www.youtube.com/watch?v=7NS53icQRrs

Hierarchical Question-Image Co-Attention for Visual Question Answering

  • arxiv: http://arxiv.org/abs/1606.00061
  • github: https://github.com/jiasenlu/HieCoAttenVQA

Multimodal Residual Learning for Visual QA

  • arxiv: http://arxiv.org/abs/1606.01455

Simple Question Answering by Attentive Convolutional Neural Network

  • arxiv: http://arxiv.org/abs/1606.03391

Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions?

  • homepage: https://computing.ece.vt.edu/~abhshkdz/vqa-hat/
  • arxiv: http://arxiv.org/abs/1606.03556

Simple and Effective Question Answering with Recurrent Neural Networks

  • arxiv: http://arxiv.org/abs/1606.05029

Analyzing the Behavior of Visual Question Answering Models

  • arxiv: http://arxiv.org/abs/1606.07356

Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding

  • arxiv: https://arxiv.org/abs/1606.01847
  • github: https://github.com/akirafukui/vqa-mcb

Deep Language Modeling for Question Answering using Keras

  • blog: http://benjaminbolte.com/blog/2016/keras-language-modeling.html
  • github: https://github.com/codekansas/keras-language-modeling

Interpreting Visual Question Answering Models

  • arxiv: http://arxiv.org/abs/1608.08974

The Color of the Cat is Gray: 1 Million Full-Sentences Visual Question Answering

  • intro: FSVQA
  • arxiv: http://arxiv.org/abs/1609.06657

Tutorial on Answering Questions about Images with Deep Learning

  • intro: The tutorial was presented at ‘2nd Summer School on Integrating Vision and Language: Deep Learning’ in Malta, 2016
  • arxiv: https://arxiv.org/abs/1610.01076

Hadamard Product for Low-rank Bilinear Pooling

  • arxiv: https://arxiv.org/abs/1610.04325
  • github: https://github.com/jnhwkim/MulLowBiVQA

Open-Ended Visual Question-Answering

  • intro: Bachelor thesis report graded with A with honours at ETSETB Telecom BCN school, Universitat Polit`ecnica de Catalunya (UPC). June 2016
  • project page: http://imatge-upc.github.io/vqa-2016-cvprw/
  • arxiv: https://arxiv.org/abs/1610.02692
  • slides: http://www.slideshare.net/xavigiro/openended-visual-questionanswering
  • github: https://github.com/imatge-upc/vqa-2016-cvprw

Deep Learning for Question Answering

  • intro: UMD. Mohit Iyyer.
  • intro: Recurrent Neural Networks, Recursive Neural Network
  • slides: http://cs.umd.edu/~miyyer/data/deepqa.pdf

Dual Attention Networks for Multimodal Reasoning and Matching

  • arxiv: https://arxiv.org/abs/1611.00471

Leveraging Video Descriptions to Learn Video Question Answering

  • intro: AAAI 2017
  • arxiv: https://arxiv.org/abs/1611.04021

Dynamic Coattention Networks For Question Answering

  • arxiv: https://arxiv.org/abs/1611.01604

State of the art deep learning model for question answering

  • blog: http://metamind.io/research/state-of-the-art-deep-learning-model-for-question-answering/

Zero-Shot Visual Question Answering

  • arxiv: https://arxiv.org/abs/1611.05546

Image-Grounded Conversations: Multimodal Context for Natural Question and Response Generation

  • intro: University of Rochester & Microsoft & University College London
  • arxiv: https://arxiv.org/abs/1701.08251

Question Answering through Transfer Learning from Large Fine-grained Supervision Data

  • intro: Seoul National University & University of Washington
  • arxiv: https://arxiv.org/abs/1702.02171

Question Answering from Unstructured Text by Retrieval and Comprehension

  • arxiv: https://arxiv.org/abs/1703.08885
  • notes: https://theneuralperspective.com/2017/04/26/question-answering-from-unstructured-text-by-retrieval-and-comprehension/

Show, Ask, Attend, and Answer: A Strong Baseline For Visual Question Answering

  • intro: Google Research
  • arxiv: https://arxiv.org/abs/1704.03162

Learning to Reason: End-to-End Module Networks for Visual Question Answering

  • intro: UC Berkeley, Boston University
  • arxiv: https://arxiv.org/abs/1704.05526

TGIF-QA: Toward Spatio-Temporal Reasoning in Visual Question Answering

  • intro: CVPR 2017.Seoul National University & Yahoo Research
  • arxiv: https://arxiv.org/abs/1704.04497
  • github: https://github.com/YunseokJANG/tgif-qa

Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks

  • intro: ACL 2017 (short)
  • project page: https://rajarshd.github.io/TextKBQA/
  • arxiv: https://arxiv.org/abs/1704.08384
  • github: https://github.com/rajarshd/TextKBQA

Learning Convolutional Text Representations for Visual Question Answering

  • arxiv: https://arxiv.org/abs/1705.06824
  • github: https://github.com/divelab/vqa-text

实战项目

VQA Demo: Visual Question Answering Demo on pretrained model

  • github: https://github.com/iamaaditya/VQA_Demo
  • ref: http://iamaaditya.github.io/research/

deep-qa: Implementation of the Convolution Neural Network for factoid QA on the answer sentence selection task

  • github: https://github.com/aseveryn/deep-qa

YodaQA: A Question Answering system built on top of the Apache UIMA framework

  • homepage: http://ailao.eu/yodaqa/
  • github: https://github.com/brmson/yodaqa

insuranceQA-cnn-lstm: tensorflow and theano cnn code for insurance QA(question Answer matching)

  • github: https://github.com/white127/insuranceQA-cnn-lstm

Tensorflow Implementation of Deeper LSTM+ normalized CNN for Visual Question Answering

  • github: https://github.com/JamesChuanggg/VQA-tensorflow

Visual Question Answering with Keras

  • project page: https://anantzoid.github.io/VQA-Keras-Visual-Question-Answering/
  • github: https://github.com/anantzoid/VQA-Keras-Visual-Question-Answering

Deep Learning Models for Question Answering with Keras

  • blog: http://sujitpal.blogspot.jp/2016/10/deep-learning-models-for-question.html

GuessWhat?! Visual object discovery through multi-modal dialogue

  • intro: University of Montreal & Univ. Lille & Google DeepMind & Twitter
  • arxiv: https://arxiv.org/abs/1611.08481

Deep QA: Using deep learning to answer Aristo’s science questions

  • github: https://github.com/allenai/deep_qa

Visual Question Answering in Pytorch

https://github.com/Cadene/vqa.pytorch

Dataset

Visual7W: Grounded Question Answering in Images

  • homepage: http://web.stanford.edu/~yukez/visual7w/
  • github: https://github.com/yukezhu/visual7w-toolkit
  • github: https://github.com/yukezhu/visual7w-qa-models

Resources

Awesome Visual Question Answering

  • github: https://github.com/JamesChuanggg/awesome-vqa

Language Understanding

Recurrent Neural Networks with External Memory for Language Understanding

  • arxiv: http://arxiv.org/abs/1506.00195
  • github: https://github.com/npow/RNN-EM

Neural Semantic Encoders

  • intro: EACL 2017
  • arxiv: https://arxiv.org/abs/1607.04315
  • github(Keras): https://github.com/pdasigi/neural-semantic-encoders

Neural Tree Indexers for Text Understanding

  • arxiv: https://arxiv.org/abs/1607.04492
  • bitbucket: https://bitbucket.org/tsendeemts/nti/src

Better Text Understanding Through Image-To-Text Transfer

  • intro: Google Brain & Technische Universität München
  • arxiv: https://arxiv.org/abs/1705.08386

Text Classification

Convolutional Neural Networks for Sentence Classification

  • intro: EMNLP 2014
  • arxiv: http://arxiv.org/abs/1408.5882
  • github(Theano): https://github.com/yoonkim/CNN_sentence
  • github(Torch): https://github.com/harvardnlp/sent-conv-torch
  • github(Keras): https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras
  • github(Tensorflow): https://github.com/abhaikollara/CNN-Sentence-Classification

Recurrent Convolutional Neural Networks for Text Classification

  • paper: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9745/9552
  • github: https://github.com/knok/rcnn-text-classification

Character-level Convolutional Networks for Text Classification

  • intro: NIPS 2015. “Text Understanding from Scratch”
  • arxiv: http://arxiv.org/abs/1509.01626
  • github: https://github.com/zhangxiangxiao/Crepe
  • datasets: http://goo.gl/JyCnZq
  • github(TensorFlow): https://github.com/mhjabreel/CharCNN

A C-LSTM Neural Network for Text Classification

  • arxiv: http://arxiv.org/abs/1511.08630

Rationale-Augmented Convolutional Neural Networks for Text Classification

  • arxiv: http://arxiv.org/abs/1605.04469

Text classification using DIGITS and Torch7

  • github: https://github.com/NVIDIA/DIGITS/tree/master/examples/text-classification

Recurrent Neural Network for Text Classification with Multi-Task Learning

  • arxiv: http://arxiv.org/abs/1605.05101

Deep Multi-Task Learning with Shared Memory

  • intro: EMNLP 2016
  • arxiv: https://arxiv.org/abs/1609.07222

Virtual Adversarial Training for Semi-Supervised Text Classification

Adversarial Training Methods for Semi-Supervised Text Classification

  • arxiv: http://arxiv.org/abs/1605.07725
  • notes: https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/adversarial-text-classification.md

Sentence Convolution Code in Torch: Text classification using a convolutional neural network

  • github: https://github.com/harvardnlp/sent-conv-torch

Bag of Tricks for Efficient Text Classification

  • intro: Facebook AI Research
  • arxiv: http://arxiv.org/abs/1607.01759
  • github: https://github.com/kemaswill/fasttext_torch
  • github: https://github.com/facebookresearch/fastText

Actionable and Political Text Classification using Word Embeddings and LSTM

  • arxiv: http://arxiv.org/abs/1607.02501

Implementing a CNN for Text Classification in TensorFlow

  • blog: http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/

fancy-cnn: Multiparadigm Sequential Convolutional Neural Networks for text classification

  • github: https://github.com/textclf/fancy-cnn

Convolutional Neural Networks for Text Categorization: Shallow Word-level vs. Deep Character-level

  • arxiv: http://arxiv.org/abs/1609.00718

Tweet Classification using RNN and CNN

  • github: https://github.com/ganeshjawahar/tweet-classify

Hierarchical Attention Networks for Document Classification

  • intro: CMU & MSR. NAACL 2016
  • paper: https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf
  • github(TensorFlow): https://github.com/raviqqe/tensorflow-font2char2word2sent2doc
  • github(TensorFlow): https://github.com/ematvey/deep-text-classifier

Generative and Discriminative Text Classification with Recurrent Neural Networks

  • intro: DeepMind
  • arxiv: https://arxiv.org/abs/1703.01898

Adversarial Multi-task Learning for Text Classification

  • intro: ACL 2017
  • arxiv: https://arxiv.org/abs/1704.05742
  • data: http://nlp.fudan.edu.cn/data/

Deep Text Classification Can be Fooled

  • intro: Renmin University of China
  • arxiv: https://arxiv.org/abs/1704.08006

Deep neural network framework for multi-label text classification

  • github: https://github.com/inspirehep/magpie

Text Clustering

Self-Taught Convolutional Neural Networks for Short Text Clustering

  • intro: Chinese Academy of Sciences. accepted for publication in Neural Networks
  • arxiv: https://arxiv.org/abs/1701.00185
  • github: https://github.com/jacoxu/STC2

Alignment

Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books

  • arxiv: http://arxiv.org/abs/1506.06724
  • github: https://github.com/ryankiros/neural-storyteller

Dialog

Visual Dialog

  • webiste: http://visualdialog.org/
  • arxiv: https://arxiv.org/abs/1611.08669
  • github: https://github.com/batra-mlp-lab/visdial-amt-chat
  • github(Torch): https://github.com/batra-mlp-lab/visdial
  • github(PyTorch): https://github.com/Cloud-CV/visual-chatbot
  • demo: http://visualchatbot.cloudcv.org/

Papers, code and data from FAIR for various memory-augmented nets with application to text understanding and dialogue.

  • post: https://www.facebook.com/yann.lecun/posts/10154070851697143

Neural Emoji Recommendation in Dialogue Systems

  • intro: Tsinghua University & Baidu
  • arxiv: https://arxiv.org/abs/1612.04609

Memory Networks

Neural Turing Machines

  • paper: http://arxiv.org/abs/1410.5401
  • Chs: http://www.jianshu.com/p/94dabe29a43b
  • github: https://github.com/shawntan/neural-turing-machines
  • github: https://github.com/DoctorTeeth/diffmem
  • github: https://github.com/carpedm20/NTM-tensorflow
  • blog: https://blog.aidangomez.ca/2016/05/16/The-Neural-Turing-Machine/

Memory Networks

  • intro: Facebook AI Research
  • arxiv: http://arxiv.org/abs/1410.3916
  • github: https://github.com/npow/MemNN

End-To-End Memory Networks

  • intro: Facebook AI Research
  • intro: Continuous version of memory extraction via softmax. “Weakly supervised memory networks”
  • arxiv: http://arxiv.org/abs/1503.08895
  • github: https://github.com/facebook/MemNN
  • github: https://github.com/vinhkhuc/MemN2N-babi-python
  • github: https://github.com/npow/MemN2N
  • github: https://github.com/domluna/memn2n
  • github(Tensorflow): https://github.com/abhaikollara/MemN2N-Tensorflow
  • video: http://research.microsoft.com/apps/video/default.aspx?id=259920&r=1
  • video: http://pan.baidu.com/s/1pKiGLzP

Reinforcement Learning Neural Turing Machines - Revised

  • arxiv: http://arxiv.org/abs/1505.00521
  • github: https://github.com/ilyasu123/rlntm

Learning to Transduce with Unbounded Memory

  • intro: Google DeepMind
  • arxiv: http://arxiv.org/abs/1506.02516

How to Code and Understand DeepMind’s Neural Stack Machine

  • blog: https://iamtrask.github.io/2016/02/25/deepminds-neural-stack-machine/
  • video tutorial: http://pan.baidu.com/s/1qX0EGDe

Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

  • intro: Memory networks implemented via rnns and gated recurrent units (GRUs).
  • arxiv: http://arxiv.org/abs/1506.07285
  • blog(“Implementing Dynamic memory networks”): http://yerevann.github.io//2016/02/05/implementing-dynamic-memory-networks/
  • github(Python): https://github.com/swstarlab/DynamicMemoryNetworks

Ask Me Even More: Dynamic Memory Tensor Networks (Extended Model)

  • intro: extensions for the Dynamic Memory Network (DMN)
  • arxiv: https://arxiv.org/abs/1703.03939
  • github: https://github.com/rgsachin/DMTN

Structured Memory for Neural Turing Machines

  • intro: IBM Watson
  • arxiv: http://arxiv.org/abs/1510.03931

Dynamic Memory Networks for Visual and Textual Question Answering

  • intro: MetaMind 2016
  • arxiv: http://arxiv.org/abs/1603.01417
  • slides: http://slides.com/smerity/dmn-for-tqa-and-vqa-nvidia-gtc#/
  • github: https://github.com/therne/dmn-tensorflow
  • github(Theano): https://github.com/ethancaballero/Improved-Dynamic-Memory-Networks-DMN-plus
  • review: https://www.technologyreview.com/s/600958/the-memory-trick-making-computers-seem-smarter/
  • github(Tensorflow): https://github.com/DeepRNN/visual_question_answering

Neural GPUs Learn Algorithms

  • arxiv: http://arxiv.org/abs/1511.08228
  • github: https://github.com/tensorflow/models/tree/master/neural_gpu
  • github: https://github.com/ikostrikov/torch-neural-gpu
  • github: https://github.com/tristandeleu/neural-gpu

Hierarchical Memory Networks

  • arxiv: http://arxiv.org/abs/1605.07427

Convolutional Residual Memory Networks

  • arxiv: http://arxiv.org/abs/1606.05262

NTM-Lasagne: A Library for Neural Turing Machines in Lasagne

  • github: https://github.com/snipsco/ntm-lasagne
  • blog: https://medium.com/snips-ai/ntm-lasagne-a-library-for-neural-turing-machines-in-lasagne-2cdce6837315#.96pnh1m6j

Evolving Neural Turing Machines for Reward-based Learning

  • homepage: http://sebastianrisi.com/entm/
  • paper: http://sebastianrisi.com/wp-content/uploads/greve_gecco16.pdf
  • code: https://www.dropbox.com/s/t019mwabw5nsnxf/neuralturingmachines-master.zip?dl=0

Hierarchical Memory Networks for Answer Selection on Unknown Words

  • intro: COLING 2016
  • arxiv: https://arxiv.org/abs/1609.08843
  • github: https://github.com/jacoxu/HMN4QA

Gated End-to-End Memory Networks

  • arxiv: https://arxiv.org/abs/1610.04211

Can Active Memory Replace Attention?

  • intro: Google Brain
  • arxiv: https://arxiv.org/abs/1610.08613

Papers

Globally Normalized Transition-Based Neural Networks

  • intro: speech tagging, dependency parsing and sentence compression
  • arxiv: http://arxiv.org/abs/1603.06042
  • github(SyntaxNet): https://github.com/tensorflow/models/tree/master/syntaxnet

A Decomposable Attention Model for Natural Language Inference

  • intro: EMNLP 2016
  • arxiv: http://arxiv.org/abs/1606.01933
  • github(Keras+spaCy): https://github.com/explosion/spaCy/tree/master/examples/keras_parikh_entailment

Improving Recurrent Neural Networks For Sequence Labelling

  • arxiv: http://arxiv.org/abs/1606.02555

Recurrent Memory Networks for Language Modeling

  • arixv: http://arxiv.org/abs/1601.01272
  • github: https://github.com/ketranm/RMN

Tweet2Vec: Learning Tweet Embeddings Using Character-level CNN-LSTM Encoder-Decoder

  • intro: MIT Media Lab
  • arixv: http://arxiv.org/abs/1607.07514

Learning text representation using recurrent convolutional neural network with highway layers

  • intro: Neu-IR '16 SIGIR Workshop on Neural Information Retrieval
  • arxiv: http://arxiv.org/abs/1606.06905
  • github: https://github.com/wenying45/deep_learning_tutorial/tree/master/rcnn-hw

Ask the GRU: Multi-task Learning for Deep Text Recommendations

  • arxiv: http://arxiv.org/abs/1609.02116

From phonemes to images: levels of representation in a recurrent neural model of visually-grounded language learning

  • intro: COLING 2016
  • arxiv: https://arxiv.org/abs/1610.03342

Visualizing Linguistic Shift

  • arxiv: https://arxiv.org/abs/1611.06478

A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks

  • intro: The University of Tokyo & Salesforce Research
  • arxiv: https://arxiv.org/abs/1611.01587

Deep Learning applied to NLP

https://arxiv.org/abs/1703.03091

Attention Is All You Need

  • intro: Google Brain & Google Research & University of Toronto
  • intro: Just attention + positional encoding = state of the art
  • arxiv: https://arxiv.org/abs/1706.03762
  • github(Chainer): https://github.com/soskek/attention_is_all_you_need

Interesting Applications

Data-driven HR - Résumé Analysis Based on Natural Language Processing and Machine Learning

  • arxiv: http://arxiv.org/abs/1606.05611

sk_p: a neural program corrector for MOOCs

  • intro: MIT
  • intro: Using seq2seq to fix buggy code submissions in MOOCs
  • arxiv: http://arxiv.org/abs/1607.02902

Neural Generation of Regular Expressions from Natural Language with Minimal Domain Knowledge

  • intro: EMNLP 2016
  • intro: translating natural language queries into regular expressions which embody their meaning
  • arxiv: http://arxiv.org/abs/1608.03000

emoji2vec: Learning Emoji Representations from their Description

  • intro: EMNLP 2016
  • arxiv: http://arxiv.org/abs/1609.08359

Inside-Outside and Forward-Backward Algorithms Are Just Backprop (Tutorial Paper)

  • paper: https://www.cs.jhu.edu/~jason/papers/eisner.spnlp16.pdf

Cruciform: Solving Crosswords with Natural Language Processing

  • arxiv: https://arxiv.org/abs/1611.02360

Smart Reply: Automated Response Suggestion for Email

  • intro: Google. KDD 2016
  • arxiv: https://arxiv.org/abs/1606.04870
  • notes: https://blog.acolyer.org/2016/11/24/smart-reply-automated-response-suggestion-for-email/

Deep Learning for RegEx

  • intro: a winning submission of Extraction of product attribute values competition (CrowdAnalytix)
  • blog: http://dlacombejr.github.io/2016/11/13/deep-learning-for-regex.html

Learning Python Code Suggestion with a Sparse Pointer Network

  • intro: Learning to Auto-Complete using RNN Language Models
  • intro: University College London
  • arxiv: https://arxiv.org/abs/1611.08307
  • github: https://github.com/uclmr/pycodesuggest

End-to-End Prediction of Buffer Overruns from Raw Source Code via Neural Memory Networks

https://arxiv.org/abs/1703.02458

Convolutional Sequence to Sequence Learning

  • arxiv: https://arxiv.org/abs/1705.03122
  • paper: https://s3.amazonaws.com/fairseq/papers/convolutional-sequence-to-sequence-learning.pdf
  • github: https://github.com/facebookresearch/fairseq

DeepFix: Fixing Common C Language Errors by Deep Learning

  • intro: AAAI 2017. Indian Institute of Science
  • project page: http://www.iisc-seal.net/deepfix
  • paper: https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603/13921
  • bitbucket: https://bitbucket.org/iiscseal/deepfix

Project

TheanoLM - An Extensible Toolkit for Neural Network Language Modeling

  • arxiv: http://arxiv.org/abs/1605.00942
  • github: https://github.com/senarvi/theanolm

NLP-Caffe: natural language processing with Caffe

  • github: https://github.com/Russell91/nlpcaffe

DL4NLP: Deep Learning for Natural Language Processing

  • github: https://github.com/nokuno/dl4nlp

Combining CNN and RNN for spoken language identification

  • blog: http://yerevann.github.io//2016/06/26/combining-cnn-and-rnn-for-spoken-language-identification/
  • github: https://github.com/YerevaNN/Spoken-language-identification/tree/master/theano

Character-Aware Neural Language Models: LSTM language model with CNN over characters in TensorFlow

  • github: https://github.com/carpedm20/lstm-char-cnn-tensorflow

Neural Relation Extraction with Selective Attention over Instances

  • paper: http://nlp.csai.tsinghua.edu.cn/~lzy/publications/acl2016_nre.pdf
  • github: https://github.com/thunlp/NRE

deep-simplification: Text simplification using RNNs

  • intro: achieves a BLEU score of 61.14
  • github: https://github.com/mbartoli/deep-simplification

lamtram: A toolkit for language and translation modeling using neural networks

  • github: https://github.com/neubig/lamtram

Lango: Language Lego

  • intro: Lango is a natural language processing library for working with the building blocks of language.
  • github: https://github.com/ayoungprogrammer/Lango

Sequence-to-Sequence Learning with Attentional Neural Networks

  • github(Torch): https://github.com/harvardnlp/seq2seq-attn

harvardnlp code

  • intro: pen-source implementations of popular deep learning techniques with applications to NLP
  • homepage: http://nlp.seas.harvard.edu/code/

Seq2seq: Sequence to Sequence Learning with Keras

  • github: https://github.com/farizrahman4u/seq2seq

debug seq2seq

  • github: https://github.com/nicolas-ivanov/debug_seq2seq

Recurrent & convolutional neural network modules

  • intro: This repo contains Theano implementations of popular neural network components and optimization methods.
  • github: https://github.com/taolei87/rcnn

Datasets

Datasets for Natural Language Processing

  • github: https://github.com/karthikncode/nlp-datasets

Blogs

How to read: Character level deep learning

  • blog: https://offbit.github.io/how-to-read/
  • github: https://github.com/offbit/char-models

Heavy Metal and Natural Language Processing

  • part 1: http://www.degeneratestate.org/posts/2016/Apr/20/heavy-metal-and-natural-language-processing-part-1/

Sequence To Sequence Attention Models In PyCNN

https://talbaumel.github.io/Neural+Attention+Mechanism.html

Source Code Classification Using Deep Learning

http://blog.aylien.com/source-code-classification-using-deep-learning/

My Process for Learning Natural Language Processing with Deep Learning

https://medium.com/@MichaelTeifel/my-process-for-learning-natural-language-processing-with-deep-learning-bd0a64a36086

Convolutional Methods for Text

https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f

Word2Vec

Word2Vec Tutorial - The Skip-Gram Model

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Word2Vec Tutorial Part 2 - Negative Sampling

http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/

Word2Vec Resources

http://mccormickml.com/2016/04/27/word2vec-resources/

演示

AskImage.org - Deep Learning for Answering Questions about Images

  • homepage: http://www.askimage.org/

演讲

Navigating Natural Language Using Reinforcement Learning

  • youtube: https://www.youtube.com/watch?v=7s-erJbCkaY

其它资源

So, you need to understand language data? Open-source NLP software can help!

  • blog: http://entopix.com/so-you-need-to-understand-language-data-open-source-nlp-software-can-help.html

Curated list of resources on building bots

  • github: https://github.com/hackerkid/bots

Notes for deep learning on NLP

https://medium.com/@frank_chung/notes-for-deep-learning-on-nlp-94ddfcb45723#.iouo0v7m7

你可能感兴趣的:(聊天机器人)