本文属于研究聊天机器人,前沿学术内容;附带大量 GitHub 程序,先收藏!
示例程序
Practical Neural Networks for NLP
- intro: EMNLP 2016
- github: https://github.com/clab/dynet_tutorial_examples
Structured Neural Networks for NLP: From Idea to Code
- slides: https://github.com/neubig/yrsnlp-2016/blob/master/neubig16yrsnlp.pdf
- github: https://github.com/neubig/yrsnlp-2016
Understanding Deep Learning Models in NLP
http://nlp.yvespeirsman.be/blog/understanding-deeplearning-models-nlp/
Deep learning for natural language processing, Part 1
https://softwaremill.com/deep-learning-for-nlp/
神经网络模型
Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4VRLU1ok-1600087303353)(/assets/dl-materials/Unifying_Visual-Semantic_Embeddings_with_Multimodal_Neural_Language_Models.png)]
- arxiv: http://arxiv.org/abs/1411.2539
- github: https://github.com/ryankiros/visual-semantic-embedding
- results: http://www.cs.toronto.edu/~rkiros/lstm_scnlm.html
- demo: http://deeplearning.cs.toronto.edu/i2t
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
- arxiv: http://arxiv.org/abs/1503.00075
- github: https://github.com/stanfordnlp/treelstm
- github(Theano): https://github.com/ofirnachum/tree_rnn
Visualizing and Understanding Neural Models in NLP
- arxiv: http://arxiv.org/abs/1506.01066
- github: https://github.com/jiweil/Visualizing-and-Understanding-Neural-Models-in-NLP
Character-Aware Neural Language Models
- paper: http://arxiv.org/abs/1508.06615
- github: https://github.com/yoonkim/lstm-char-cnn
Skip-Thought Vectors
- paper: http://arxiv.org/abs/1506.06726
- github: https://github.com/ryankiros/skip-thoughts
A Primer on Neural Network Models for Natural Language Processing
- arxiv: http://arxiv.org/abs/1510.00726
Character-aware Neural Language Models
- arxiv: http://arxiv.org/abs/1508.06615
Neural Variational Inference for Text Processing
- arxiv: http://arxiv.org/abs/1511.06038
- notes: http://dustintran.com/blog/neural-variational-inference-for-text-processing/
- github: https://github.com/carpedm20/variational-text-tensorflow
- github: https://github.com/cheng6076/NVDM
Sequence to Sequence Learning
Generating Text with Deep Reinforcement Learning
- intro: NIPS 2015
- arxiv: http://arxiv.org/abs/1510.09202
MUSIO: A Deep Learning based Chatbot Getting Smarter
- homepage: http://ec2-204-236-149-143.us-west-1.compute.amazonaws.com:9000/
- github(Torch7): https://github.com/deepcoord/seq2seq
Translation
Learning phrase representations using rnn encoder-decoder for statistical machine translation
- intro: GRU. EMNLP 2014
- arxiv: http://arxiv.org/abs/1406.1078
Neural Machine Translation by Jointly Learning to Align and Translate
- intro: ICLR 2015
- arxiv: http://arxiv.org/abs/1409.0473
- github: https://github.com/lisa-groundhog/GroundHog
Multi-Source Neural Translation
- intro: “report up to +4.8 Bleu increases on top of a very strong attention-based neural translation model.”
- arxiv: [Multi-Source Neural Translation](Multi-Source Neural Translation)
- github(Zoph_RNN): https://github.com/isi-nlp/Zoph_RNN
- video: http://research.microsoft.com/apps/video/default.aspx?id=260336
Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism
- arxiv: http://arxiv.org/abs/1601.01073
- github: https://github.com/nyu-dl/dl4mt-multi
- notes: https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/multi-way-nmt-shared-attention.md
Modeling Coverage for Neural Machine Translation
- arxiv: http://arxiv.org/abs/1601.04811
A Character-level Decoder without Explicit Segmentation for Neural Machine Translation
- arxiv: http://arxiv.org/abs/1603.06147
- github: https://github.com/nyu-dl/dl4mt-cdec
NEMATUS: Attention-based encoder-decoder model for neural machine translation
- github: https://github.com/rsennrich/nematus
Variational Neural Machine Translation
- intro: EMNLP 2016
- arxiv: https://arxiv.org/abs/1605.07869
- github: https://github.com/DeepLearnXMU/VNMT
Neural Network Translation Models for Grammatical Error Correction
- arxiv: http://arxiv.org/abs/1606.00189
Linguistic Input Features Improve Neural Machine Translation
- arxiv: http://arxiv.org/abs/1606.02892
- github: https://github.com/rsennrich/nematus
Sequence-Level Knowledge Distillation
- intro: EMNLP 2016
- arxiv: http://arxiv.org/abs/1606.07947
- github: https://github.com/harvardnlp/nmt-android
Neural Machine Translation: Breaking the Performance Plateau
- slides: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf
Tips on Building Neural Machine Translation Systems
- github: https://github.com/neubig/nmt-tips
Semi-Supervised Learning for Neural Machine Translation
- intro: ACL 2016. Tsinghua University & Baidu Inc
- arxiv: http://arxiv.org/abs/1606.04596
EUREKA-MangoNMT: A C++ toolkit for neural machine translation for CPU
- github: https://github.com/jiajunzhangnlp/EUREKA-MangoNMT
Deep Character-Level Neural Machine Translation
- github: https://github.com/SwordYork/DCNMT
Neural Machine Translation Implementations
- github: https://github.com/jonsafari/nmt-list
Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
- arxiv: http://arxiv.org/abs/1609.08144v1
Learning to Translate in Real-time with Neural Machine Translation
- arxiv: https://arxiv.org/abs/1610.00388
Is Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions
- arxiv: https://arxiv.org/abs/1610.01108
- github: https://github.com/emjotde/amunmt
Fully Character-Level Neural Machine Translation without Explicit Segmentation
- arxiv: https://arxiv.org/abs/1610.03017
- github: https://github.com/nyu-dl/dl4mt-c2c
Navigational Instruction Generation as Inverse Reinforcement Learning with Neural Machine Translation
- arxiv: https://arxiv.org/abs/1610.03164
Neural Machine Translation in Linear Time
- intro: ByteNet
- arxiv: https://arxiv.org/abs/1610.10099
- github: https://github.com/paarthneekhara/byteNet-tensorflow
- github(Tensorflow): https://github.com/buriburisuri/ByteNet
Neural Machine Translation with Reconstruction
- arxiv: https://arxiv.org/abs/1611.01874
A Convolutional Encoder Model for Neural Machine Translation
- intro: Facebook AI Research
- arxiv: https://arxiv.org/abs/1611.02344
Toward Multilingual Neural Machine Translation with Universal Encoder and Decoder
- arxiv: https://arxiv.org/abs/1611.04798
MXNMT: MXNet based Neural Machine Translation
- github: https://github.com/magic282/MXNMT
Doubly-Attentive Decoder for Multi-modal Neural Machine Translation
- intro: Dublin City University & Trinity College Dublin
- arxiv: https://arxiv.org/abs/1702.01287
Massive Exploration of Neural Machine Translation Architectures
- intro: Google Brain
- arxiv: https://arxiv.org/abs/1703.03906
- github: https://github.com/google/seq2seq/
Depthwise Separable Convolutions for Neural Machine Translation
- intro: Google Brain & University of Toronto
- arxiv: https://arxiv.org/abs/1706.03059
自动摘要
Extraction of Salient Sentences from Labelled Documents
- arxiv: http://arxiv.org/abs/1412.6815
- github: https://github.com/mdenil/txtnets
- notes: https://github.com/jxieeducation/DIY-Data-Science/blob/master/papernotes/2014/06/model-visualizing-summarising-conv-net.md
A Neural Attention Model for Abstractive Sentence Summarization
- intro: EMNLP 2015. Facebook AI Research
- arxiv: http://arxiv.org/abs/1509.00685
- github: https://github.com/facebook/NAMAS
- github(TensorFlow): https://github.com/carpedm20/neural-summary-tensorflow
A Convolutional Attention Network for Extreme Summarization of Source Code
- homepage: http://groups.inf.ed.ac.uk/cup/codeattention/
- arxiv: http://arxiv.org/abs/1602.03001
- github: https://github.com/jxieeducation/DIY-Data-Science/blob/master/papernotes/2016/02/conv-attention-network-source-code-summarization.md
Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond
- intro: BM Watson & Université de Montréal
- arxiv: http://arxiv.org/abs/1602.06023
textsum: Text summarization with TensorFlow
- blog: https://research.googleblog.com/2016/08/text-summarization-with-tensorflow.html
- github: https://github.com/tensorflow/models/tree/master/textsum
How to Run Text Summarization with TensorFlow
- blog: https://medium.com/@surmenok/how-to-run-text-summarization-with-tensorflow-d4472587602d#.mll1rqgjg
- github: https://github.com/surmenok/TextSum
阅读理解
Text Comprehension with the Attention Sum Reader Network
Text Understanding with the Attention Sum Reader Network
- intro: ACL 2016
- arxiv: https://arxiv.org/abs/1603.01547
- github: https://github.com/rkadlec/asreader
A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task
- arxiv: http://arxiv.org/abs/1606.02858
- github: https://github.com/danqi/rc-cnn-dailymail
Consensus Attention-based Neural Networks for Chinese Reading Comprehension
- arxiv: http://arxiv.org/abs/1607.02250
- dataset(“HFL-RC”): http://hfl.iflytek.com/chinese-rc/
Separating Answers from Queries for Neural Reading Comprehension
- arxiv: http://arxiv.org/abs/1607.03316
- github: https://github.com/dirkweissenborn/qa_network
Attention-over-Attention Neural Networks for Reading Comprehension
- arxiv: http://arxiv.org/abs/1607.04423
- github: https://github.com/OlavHN/attention-over-attention
Teaching Machines to Read and Comprehend CNN News and Children Books using Torch
- github: https://github.com/ganeshjawahar/torch-teacher
Reasoning with Memory Augmented Neural Networks for Language Comprehension
- arxiv: https://arxiv.org/abs/1610.06454
Bidirectional Attention Flow: Bidirectional Attention Flow for Machine Comprehension
- project page: https://allenai.github.io/bi-att-flow/
- github: https://github.com/allenai/bi-att-flow
NewsQA: A Machine Comprehension Dataset
- arxiv: https://arxiv.org/abs/1611.09830
- dataset: http://datasets.maluuba.com/NewsQA
- github: https://github.com/Maluuba/newsqa
Gated-Attention Readers for Text Comprehension
- intro: CMU
- arxiv: https://arxiv.org/abs/1606.01549
- github: https://github.com/bdhingra/ga-reader
Get To The Point: Summarization with Pointer-Generator Networks
- intro: ACL 2017. Stanford University & Google Brain
- arxiv: https://arxiv.org/abs/1704.04368
- github: https://github.com/abisee/pointer-generator
问答系统
Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks
- intro: Facebook AI Research
- arxiv: http://arxiv.org/abs/1502.05698v1
- github: https://github.com/facebook/bAbI-tasks
VQA: Visual Question Answering
- intro: ICCV 2015
- arxiv: http://arxiv.org/abs/1505.00468
- homepage: http://visualqa.org/
Ask Your Neurons: A Neural-based Approach to Answering Questions about Images
- intro: ICCV 2015
- arxiv: http://arxiv.org/abs/1505.01121
- project: https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/visual-turing-challenge/
- video: https://www.youtube.com/watch?v=QZEwDcN8ehs&hd=1
Exploring Models and Data for Image Question Answering
- arxiv: http://arxiv.org/abs/1505.02074
- gtihub(Tensorflow): https://github.com/paarthneekhara/neural-vqa-tensorflow
- github(Python+Keras): https://github.com/ayushoriginal/NeuralNetwork-ImageQA
Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering
- arxiv: http://arxiv.org/abs/1505.05612
Teaching Machines to Read and Comprehend
- intro: Google DeepMind
- arxiv: http://arxiv.org/abs/1506.03340
- github: https://github.com/deepmind/rc-data
- github(Theano/Blocks): https://github.com/thomasmesnard/DeepMind-Teaching-Machines-to-Read-and-Comprehend
- github(Tensorflow): https://github.com/carpedm20/attentive-reader-tensorflow
Neural Module Networks
- intro: CVPR 2016
- arxiv: http://arxiv.org/abs/1511.02799
- github: https://github.com/jacobandreas/nmn2
Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction
- arxiv: http://arxiv.org/abs/1511.05756
- github: https://github.com/HyeonwooNoh/DPPnet
- project page: http://cvlab.postech.ac.kr/research/dppnet/
Neural Generative Question Answering
- arxiv: http://arxiv.org/abs/1512.01337
Stacked Attention Networks for Image Question Answering
- arxiv: http://arxiv.org/abs/1511.02274
- github: https://github.com/abhshkdz/neural-vqa-attention
Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering
- arxiv: http://arxiv.org/abs/1511.05234
Simple Baseline for Visual Question Answering
- intro: Facebook AI Research. Bag-of-word
- arxiv: http://arxiv.org/abs/1512.02167
- github: https://github.com/metalbubble/VQAbaseline
- demo: http://visualqa.csail.mit.edu/
MovieQA: Understanding Stories in Movies through Question-Answering
- intro: CVPR 2016
- project page: http://movieqa.cs.toronto.edu/home/
- arxiv: http://arxiv.org/abs/1512.02902
- gtihub: https://github.com/makarandtapaswi/MovieQA_CVPR2016/
Deeper LSTM+ normalized CNN for Visual Question Answering
- intro: “This current code can get 58.16 on Open-Ended and 63.09 on Multiple-Choice on test-standard split”
- github: https://github.com/VT-vision-lab/VQA_LSTM_CNN
A Neural Network for Factoid Question Answering over Paragraphs
- project page: http://cs.umd.edu/~miyyer/qblearn/
- paper: https://cs.umd.edu/~miyyer/pubs/2014_qb_rnn.pdf
- code+data: https://cs.umd.edu/~miyyer/qblearn/qanta.tar.gz
Learning to Compose Neural Networks for Question Answering
- intro: NAACL 2016 Best paper
- arxiv: http://arxiv.org/abs/1601.01705
Generating Natural Questions About an Image
- arxiv: http://arxiv.org/abs/1603.06059
Question Answering on Freebase via Relation Extraction and Textual Evidence
- intro: ACL 2016
- arxiv: https://arxiv.org/abs/1603.00957
- github: https://github.com/syxu828/QuestionAnsweringOverFB
Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus
- arxiv: http://arxiv.org/abs/1603.06807
Character-Level Question Answering with Attention
- arxiv: http://arxiv.org/abs/1604.00727
- comment(by @Wenpeng_Yin): “fancy model with minor improvement”
A Focused Dynamic Attention Model for Visual Question Answering
- arxiv: http://arxiv.org/abs/1604.01485
Visual Question Answering Literature Survey
- blog: http://iamaaditya.github.io/research/literature/
The DIY Guide to Visual Question Answering
- github: https://github.com/jxieeducation/DIY-Data-Science/blob/master/research/visual_qa.md
Question Answering via Integer Programming over Semi-Structured Knowledge
- arxiv: http://arxiv.org/abs/1604.06076
- github: https://github.com/allenai/tableilp
- youtube: https://www.youtube.com/watch?v=7NS53icQRrs
Hierarchical Question-Image Co-Attention for Visual Question Answering
- arxiv: http://arxiv.org/abs/1606.00061
- github: https://github.com/jiasenlu/HieCoAttenVQA
Multimodal Residual Learning for Visual QA
- arxiv: http://arxiv.org/abs/1606.01455
Simple Question Answering by Attentive Convolutional Neural Network
- arxiv: http://arxiv.org/abs/1606.03391
Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions?
- homepage: https://computing.ece.vt.edu/~abhshkdz/vqa-hat/
- arxiv: http://arxiv.org/abs/1606.03556
Simple and Effective Question Answering with Recurrent Neural Networks
- arxiv: http://arxiv.org/abs/1606.05029
Analyzing the Behavior of Visual Question Answering Models
- arxiv: http://arxiv.org/abs/1606.07356
Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
- arxiv: https://arxiv.org/abs/1606.01847
- github: https://github.com/akirafukui/vqa-mcb
Deep Language Modeling for Question Answering using Keras
- blog: http://benjaminbolte.com/blog/2016/keras-language-modeling.html
- github: https://github.com/codekansas/keras-language-modeling
Interpreting Visual Question Answering Models
- arxiv: http://arxiv.org/abs/1608.08974
The Color of the Cat is Gray: 1 Million Full-Sentences Visual Question Answering
- intro: FSVQA
- arxiv: http://arxiv.org/abs/1609.06657
Tutorial on Answering Questions about Images with Deep Learning
- intro: The tutorial was presented at ‘2nd Summer School on Integrating Vision and Language: Deep Learning’ in Malta, 2016
- arxiv: https://arxiv.org/abs/1610.01076
Hadamard Product for Low-rank Bilinear Pooling
- arxiv: https://arxiv.org/abs/1610.04325
- github: https://github.com/jnhwkim/MulLowBiVQA
Open-Ended Visual Question-Answering
- intro: Bachelor thesis report graded with A with honours at ETSETB Telecom BCN school, Universitat Polit`ecnica de Catalunya (UPC). June 2016
- project page: http://imatge-upc.github.io/vqa-2016-cvprw/
- arxiv: https://arxiv.org/abs/1610.02692
- slides: http://www.slideshare.net/xavigiro/openended-visual-questionanswering
- github: https://github.com/imatge-upc/vqa-2016-cvprw
Deep Learning for Question Answering
- intro: UMD. Mohit Iyyer.
- intro: Recurrent Neural Networks, Recursive Neural Network
- slides: http://cs.umd.edu/~miyyer/data/deepqa.pdf
Dual Attention Networks for Multimodal Reasoning and Matching
- arxiv: https://arxiv.org/abs/1611.00471
Leveraging Video Descriptions to Learn Video Question Answering
- intro: AAAI 2017
- arxiv: https://arxiv.org/abs/1611.04021
Dynamic Coattention Networks For Question Answering
- arxiv: https://arxiv.org/abs/1611.01604
State of the art deep learning model for question answering
- blog: http://metamind.io/research/state-of-the-art-deep-learning-model-for-question-answering/
Zero-Shot Visual Question Answering
- arxiv: https://arxiv.org/abs/1611.05546
Image-Grounded Conversations: Multimodal Context for Natural Question and Response Generation
- intro: University of Rochester & Microsoft & University College London
- arxiv: https://arxiv.org/abs/1701.08251
Question Answering through Transfer Learning from Large Fine-grained Supervision Data
- intro: Seoul National University & University of Washington
- arxiv: https://arxiv.org/abs/1702.02171
Question Answering from Unstructured Text by Retrieval and Comprehension
- arxiv: https://arxiv.org/abs/1703.08885
- notes: https://theneuralperspective.com/2017/04/26/question-answering-from-unstructured-text-by-retrieval-and-comprehension/
Show, Ask, Attend, and Answer: A Strong Baseline For Visual Question Answering
- intro: Google Research
- arxiv: https://arxiv.org/abs/1704.03162
Learning to Reason: End-to-End Module Networks for Visual Question Answering
- intro: UC Berkeley, Boston University
- arxiv: https://arxiv.org/abs/1704.05526
TGIF-QA: Toward Spatio-Temporal Reasoning in Visual Question Answering
- intro: CVPR 2017.Seoul National University & Yahoo Research
- arxiv: https://arxiv.org/abs/1704.04497
- github: https://github.com/YunseokJANG/tgif-qa
Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks
- intro: ACL 2017 (short)
- project page: https://rajarshd.github.io/TextKBQA/
- arxiv: https://arxiv.org/abs/1704.08384
- github: https://github.com/rajarshd/TextKBQA
Learning Convolutional Text Representations for Visual Question Answering
- arxiv: https://arxiv.org/abs/1705.06824
- github: https://github.com/divelab/vqa-text
实战项目
VQA Demo: Visual Question Answering Demo on pretrained model
- github: https://github.com/iamaaditya/VQA_Demo
- ref: http://iamaaditya.github.io/research/
deep-qa: Implementation of the Convolution Neural Network for factoid QA on the answer sentence selection task
- github: https://github.com/aseveryn/deep-qa
YodaQA: A Question Answering system built on top of the Apache UIMA framework
- homepage: http://ailao.eu/yodaqa/
- github: https://github.com/brmson/yodaqa
insuranceQA-cnn-lstm: tensorflow and theano cnn code for insurance QA(question Answer matching)
- github: https://github.com/white127/insuranceQA-cnn-lstm
Tensorflow Implementation of Deeper LSTM+ normalized CNN for Visual Question Answering
- github: https://github.com/JamesChuanggg/VQA-tensorflow
Visual Question Answering with Keras
- project page: https://anantzoid.github.io/VQA-Keras-Visual-Question-Answering/
- github: https://github.com/anantzoid/VQA-Keras-Visual-Question-Answering
Deep Learning Models for Question Answering with Keras
- blog: http://sujitpal.blogspot.jp/2016/10/deep-learning-models-for-question.html
GuessWhat?! Visual object discovery through multi-modal dialogue
- intro: University of Montreal & Univ. Lille & Google DeepMind & Twitter
- arxiv: https://arxiv.org/abs/1611.08481
Deep QA: Using deep learning to answer Aristo’s science questions
- github: https://github.com/allenai/deep_qa
Visual Question Answering in Pytorch
https://github.com/Cadene/vqa.pytorch
Dataset
Visual7W: Grounded Question Answering in Images
- homepage: http://web.stanford.edu/~yukez/visual7w/
- github: https://github.com/yukezhu/visual7w-toolkit
- github: https://github.com/yukezhu/visual7w-qa-models
Resources
Awesome Visual Question Answering
- github: https://github.com/JamesChuanggg/awesome-vqa
Language Understanding
Recurrent Neural Networks with External Memory for Language Understanding
- arxiv: http://arxiv.org/abs/1506.00195
- github: https://github.com/npow/RNN-EM
Neural Semantic Encoders
- intro: EACL 2017
- arxiv: https://arxiv.org/abs/1607.04315
- github(Keras): https://github.com/pdasigi/neural-semantic-encoders
Neural Tree Indexers for Text Understanding
- arxiv: https://arxiv.org/abs/1607.04492
- bitbucket: https://bitbucket.org/tsendeemts/nti/src
Better Text Understanding Through Image-To-Text Transfer
- intro: Google Brain & Technische Universität München
- arxiv: https://arxiv.org/abs/1705.08386
Text Classification
Convolutional Neural Networks for Sentence Classification
- intro: EMNLP 2014
- arxiv: http://arxiv.org/abs/1408.5882
- github(Theano): https://github.com/yoonkim/CNN_sentence
- github(Torch): https://github.com/harvardnlp/sent-conv-torch
- github(Keras): https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras
- github(Tensorflow): https://github.com/abhaikollara/CNN-Sentence-Classification
Recurrent Convolutional Neural Networks for Text Classification
- paper: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9745/9552
- github: https://github.com/knok/rcnn-text-classification
Character-level Convolutional Networks for Text Classification
- intro: NIPS 2015. “Text Understanding from Scratch”
- arxiv: http://arxiv.org/abs/1509.01626
- github: https://github.com/zhangxiangxiao/Crepe
- datasets: http://goo.gl/JyCnZq
- github(TensorFlow): https://github.com/mhjabreel/CharCNN
A C-LSTM Neural Network for Text Classification
- arxiv: http://arxiv.org/abs/1511.08630
Rationale-Augmented Convolutional Neural Networks for Text Classification
- arxiv: http://arxiv.org/abs/1605.04469
Text classification using DIGITS and Torch7
- github: https://github.com/NVIDIA/DIGITS/tree/master/examples/text-classification
Recurrent Neural Network for Text Classification with Multi-Task Learning
- arxiv: http://arxiv.org/abs/1605.05101
Deep Multi-Task Learning with Shared Memory
- intro: EMNLP 2016
- arxiv: https://arxiv.org/abs/1609.07222
Virtual Adversarial Training for Semi-Supervised Text Classification
Adversarial Training Methods for Semi-Supervised Text Classification
- arxiv: http://arxiv.org/abs/1605.07725
- notes: https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/adversarial-text-classification.md
Sentence Convolution Code in Torch: Text classification using a convolutional neural network
- github: https://github.com/harvardnlp/sent-conv-torch
Bag of Tricks for Efficient Text Classification
- intro: Facebook AI Research
- arxiv: http://arxiv.org/abs/1607.01759
- github: https://github.com/kemaswill/fasttext_torch
- github: https://github.com/facebookresearch/fastText
Actionable and Political Text Classification using Word Embeddings and LSTM
- arxiv: http://arxiv.org/abs/1607.02501
Implementing a CNN for Text Classification in TensorFlow
- blog: http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
fancy-cnn: Multiparadigm Sequential Convolutional Neural Networks for text classification
- github: https://github.com/textclf/fancy-cnn
Convolutional Neural Networks for Text Categorization: Shallow Word-level vs. Deep Character-level
- arxiv: http://arxiv.org/abs/1609.00718
Tweet Classification using RNN and CNN
- github: https://github.com/ganeshjawahar/tweet-classify
Hierarchical Attention Networks for Document Classification
- intro: CMU & MSR. NAACL 2016
- paper: https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf
- github(TensorFlow): https://github.com/raviqqe/tensorflow-font2char2word2sent2doc
- github(TensorFlow): https://github.com/ematvey/deep-text-classifier
Generative and Discriminative Text Classification with Recurrent Neural Networks
- intro: DeepMind
- arxiv: https://arxiv.org/abs/1703.01898
Adversarial Multi-task Learning for Text Classification
- intro: ACL 2017
- arxiv: https://arxiv.org/abs/1704.05742
- data: http://nlp.fudan.edu.cn/data/
Deep Text Classification Can be Fooled
- intro: Renmin University of China
- arxiv: https://arxiv.org/abs/1704.08006
Deep neural network framework for multi-label text classification
- github: https://github.com/inspirehep/magpie
Text Clustering
Self-Taught Convolutional Neural Networks for Short Text Clustering
- intro: Chinese Academy of Sciences. accepted for publication in Neural Networks
- arxiv: https://arxiv.org/abs/1701.00185
- github: https://github.com/jacoxu/STC2
Alignment
Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books
- arxiv: http://arxiv.org/abs/1506.06724
- github: https://github.com/ryankiros/neural-storyteller
Dialog
Visual Dialog
- webiste: http://visualdialog.org/
- arxiv: https://arxiv.org/abs/1611.08669
- github: https://github.com/batra-mlp-lab/visdial-amt-chat
- github(Torch): https://github.com/batra-mlp-lab/visdial
- github(PyTorch): https://github.com/Cloud-CV/visual-chatbot
- demo: http://visualchatbot.cloudcv.org/
Papers, code and data from FAIR for various memory-augmented nets with application to text understanding and dialogue.
- post: https://www.facebook.com/yann.lecun/posts/10154070851697143
Neural Emoji Recommendation in Dialogue Systems
- intro: Tsinghua University & Baidu
- arxiv: https://arxiv.org/abs/1612.04609
Memory Networks
Neural Turing Machines
- paper: http://arxiv.org/abs/1410.5401
- Chs: http://www.jianshu.com/p/94dabe29a43b
- github: https://github.com/shawntan/neural-turing-machines
- github: https://github.com/DoctorTeeth/diffmem
- github: https://github.com/carpedm20/NTM-tensorflow
- blog: https://blog.aidangomez.ca/2016/05/16/The-Neural-Turing-Machine/
Memory Networks
- intro: Facebook AI Research
- arxiv: http://arxiv.org/abs/1410.3916
- github: https://github.com/npow/MemNN
End-To-End Memory Networks
- intro: Facebook AI Research
- intro: Continuous version of memory extraction via softmax. “Weakly supervised memory networks”
- arxiv: http://arxiv.org/abs/1503.08895
- github: https://github.com/facebook/MemNN
- github: https://github.com/vinhkhuc/MemN2N-babi-python
- github: https://github.com/npow/MemN2N
- github: https://github.com/domluna/memn2n
- github(Tensorflow): https://github.com/abhaikollara/MemN2N-Tensorflow
- video: http://research.microsoft.com/apps/video/default.aspx?id=259920&r=1
- video: http://pan.baidu.com/s/1pKiGLzP
Reinforcement Learning Neural Turing Machines - Revised
- arxiv: http://arxiv.org/abs/1505.00521
- github: https://github.com/ilyasu123/rlntm
Learning to Transduce with Unbounded Memory
- intro: Google DeepMind
- arxiv: http://arxiv.org/abs/1506.02516
How to Code and Understand DeepMind’s Neural Stack Machine
- blog: https://iamtrask.github.io/2016/02/25/deepminds-neural-stack-machine/
- video tutorial: http://pan.baidu.com/s/1qX0EGDe
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing
- intro: Memory networks implemented via rnns and gated recurrent units (GRUs).
- arxiv: http://arxiv.org/abs/1506.07285
- blog(“Implementing Dynamic memory networks”): http://yerevann.github.io//2016/02/05/implementing-dynamic-memory-networks/
- github(Python): https://github.com/swstarlab/DynamicMemoryNetworks
Ask Me Even More: Dynamic Memory Tensor Networks (Extended Model)
- intro: extensions for the Dynamic Memory Network (DMN)
- arxiv: https://arxiv.org/abs/1703.03939
- github: https://github.com/rgsachin/DMTN
Structured Memory for Neural Turing Machines
- intro: IBM Watson
- arxiv: http://arxiv.org/abs/1510.03931
Dynamic Memory Networks for Visual and Textual Question Answering
- intro: MetaMind 2016
- arxiv: http://arxiv.org/abs/1603.01417
- slides: http://slides.com/smerity/dmn-for-tqa-and-vqa-nvidia-gtc#/
- github: https://github.com/therne/dmn-tensorflow
- github(Theano): https://github.com/ethancaballero/Improved-Dynamic-Memory-Networks-DMN-plus
- review: https://www.technologyreview.com/s/600958/the-memory-trick-making-computers-seem-smarter/
- github(Tensorflow): https://github.com/DeepRNN/visual_question_answering
Neural GPUs Learn Algorithms
- arxiv: http://arxiv.org/abs/1511.08228
- github: https://github.com/tensorflow/models/tree/master/neural_gpu
- github: https://github.com/ikostrikov/torch-neural-gpu
- github: https://github.com/tristandeleu/neural-gpu
Hierarchical Memory Networks
- arxiv: http://arxiv.org/abs/1605.07427
Convolutional Residual Memory Networks
- arxiv: http://arxiv.org/abs/1606.05262
NTM-Lasagne: A Library for Neural Turing Machines in Lasagne
- github: https://github.com/snipsco/ntm-lasagne
- blog: https://medium.com/snips-ai/ntm-lasagne-a-library-for-neural-turing-machines-in-lasagne-2cdce6837315#.96pnh1m6j
Evolving Neural Turing Machines for Reward-based Learning
- homepage: http://sebastianrisi.com/entm/
- paper: http://sebastianrisi.com/wp-content/uploads/greve_gecco16.pdf
- code: https://www.dropbox.com/s/t019mwabw5nsnxf/neuralturingmachines-master.zip?dl=0
Hierarchical Memory Networks for Answer Selection on Unknown Words
- intro: COLING 2016
- arxiv: https://arxiv.org/abs/1609.08843
- github: https://github.com/jacoxu/HMN4QA
Gated End-to-End Memory Networks
- arxiv: https://arxiv.org/abs/1610.04211
Can Active Memory Replace Attention?
- intro: Google Brain
- arxiv: https://arxiv.org/abs/1610.08613
Papers
Globally Normalized Transition-Based Neural Networks
- intro: speech tagging, dependency parsing and sentence compression
- arxiv: http://arxiv.org/abs/1603.06042
- github(SyntaxNet): https://github.com/tensorflow/models/tree/master/syntaxnet
A Decomposable Attention Model for Natural Language Inference
- intro: EMNLP 2016
- arxiv: http://arxiv.org/abs/1606.01933
- github(Keras+spaCy): https://github.com/explosion/spaCy/tree/master/examples/keras_parikh_entailment
Improving Recurrent Neural Networks For Sequence Labelling
- arxiv: http://arxiv.org/abs/1606.02555
Recurrent Memory Networks for Language Modeling
- arixv: http://arxiv.org/abs/1601.01272
- github: https://github.com/ketranm/RMN
Tweet2Vec: Learning Tweet Embeddings Using Character-level CNN-LSTM Encoder-Decoder
- intro: MIT Media Lab
- arixv: http://arxiv.org/abs/1607.07514
Learning text representation using recurrent convolutional neural network with highway layers
- intro: Neu-IR '16 SIGIR Workshop on Neural Information Retrieval
- arxiv: http://arxiv.org/abs/1606.06905
- github: https://github.com/wenying45/deep_learning_tutorial/tree/master/rcnn-hw
Ask the GRU: Multi-task Learning for Deep Text Recommendations
- arxiv: http://arxiv.org/abs/1609.02116
From phonemes to images: levels of representation in a recurrent neural model of visually-grounded language learning
- intro: COLING 2016
- arxiv: https://arxiv.org/abs/1610.03342
Visualizing Linguistic Shift
- arxiv: https://arxiv.org/abs/1611.06478
A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks
- intro: The University of Tokyo & Salesforce Research
- arxiv: https://arxiv.org/abs/1611.01587
Deep Learning applied to NLP
https://arxiv.org/abs/1703.03091
Attention Is All You Need
- intro: Google Brain & Google Research & University of Toronto
- intro: Just attention + positional encoding = state of the art
- arxiv: https://arxiv.org/abs/1706.03762
- github(Chainer): https://github.com/soskek/attention_is_all_you_need
Interesting Applications
Data-driven HR - Résumé Analysis Based on Natural Language Processing and Machine Learning
- arxiv: http://arxiv.org/abs/1606.05611
sk_p: a neural program corrector for MOOCs
- intro: MIT
- intro: Using seq2seq to fix buggy code submissions in MOOCs
- arxiv: http://arxiv.org/abs/1607.02902
Neural Generation of Regular Expressions from Natural Language with Minimal Domain Knowledge
- intro: EMNLP 2016
- intro: translating natural language queries into regular expressions which embody their meaning
- arxiv: http://arxiv.org/abs/1608.03000
emoji2vec: Learning Emoji Representations from their Description
- intro: EMNLP 2016
- arxiv: http://arxiv.org/abs/1609.08359
Inside-Outside and Forward-Backward Algorithms Are Just Backprop (Tutorial Paper)
- paper: https://www.cs.jhu.edu/~jason/papers/eisner.spnlp16.pdf
Cruciform: Solving Crosswords with Natural Language Processing
- arxiv: https://arxiv.org/abs/1611.02360
Smart Reply: Automated Response Suggestion for Email
- intro: Google. KDD 2016
- arxiv: https://arxiv.org/abs/1606.04870
- notes: https://blog.acolyer.org/2016/11/24/smart-reply-automated-response-suggestion-for-email/
Deep Learning for RegEx
- intro: a winning submission of Extraction of product attribute values competition (CrowdAnalytix)
- blog: http://dlacombejr.github.io/2016/11/13/deep-learning-for-regex.html
Learning Python Code Suggestion with a Sparse Pointer Network
- intro: Learning to Auto-Complete using RNN Language Models
- intro: University College London
- arxiv: https://arxiv.org/abs/1611.08307
- github: https://github.com/uclmr/pycodesuggest
End-to-End Prediction of Buffer Overruns from Raw Source Code via Neural Memory Networks
https://arxiv.org/abs/1703.02458
Convolutional Sequence to Sequence Learning
- arxiv: https://arxiv.org/abs/1705.03122
- paper: https://s3.amazonaws.com/fairseq/papers/convolutional-sequence-to-sequence-learning.pdf
- github: https://github.com/facebookresearch/fairseq
DeepFix: Fixing Common C Language Errors by Deep Learning
- intro: AAAI 2017. Indian Institute of Science
- project page: http://www.iisc-seal.net/deepfix
- paper: https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603/13921
- bitbucket: https://bitbucket.org/iiscseal/deepfix
Project
TheanoLM - An Extensible Toolkit for Neural Network Language Modeling
- arxiv: http://arxiv.org/abs/1605.00942
- github: https://github.com/senarvi/theanolm
NLP-Caffe: natural language processing with Caffe
- github: https://github.com/Russell91/nlpcaffe
DL4NLP: Deep Learning for Natural Language Processing
- github: https://github.com/nokuno/dl4nlp
Combining CNN and RNN for spoken language identification
- blog: http://yerevann.github.io//2016/06/26/combining-cnn-and-rnn-for-spoken-language-identification/
- github: https://github.com/YerevaNN/Spoken-language-identification/tree/master/theano
Character-Aware Neural Language Models: LSTM language model with CNN over characters in TensorFlow
- github: https://github.com/carpedm20/lstm-char-cnn-tensorflow
Neural Relation Extraction with Selective Attention over Instances
- paper: http://nlp.csai.tsinghua.edu.cn/~lzy/publications/acl2016_nre.pdf
- github: https://github.com/thunlp/NRE
deep-simplification: Text simplification using RNNs
- intro: achieves a BLEU score of 61.14
- github: https://github.com/mbartoli/deep-simplification
lamtram: A toolkit for language and translation modeling using neural networks
- github: https://github.com/neubig/lamtram
Lango: Language Lego
- intro: Lango is a natural language processing library for working with the building blocks of language.
- github: https://github.com/ayoungprogrammer/Lango
Sequence-to-Sequence Learning with Attentional Neural Networks
- github(Torch): https://github.com/harvardnlp/seq2seq-attn
harvardnlp code
- intro: pen-source implementations of popular deep learning techniques with applications to NLP
- homepage: http://nlp.seas.harvard.edu/code/
Seq2seq: Sequence to Sequence Learning with Keras
- github: https://github.com/farizrahman4u/seq2seq
debug seq2seq
- github: https://github.com/nicolas-ivanov/debug_seq2seq
Recurrent & convolutional neural network modules
- intro: This repo contains Theano implementations of popular neural network components and optimization methods.
- github: https://github.com/taolei87/rcnn
Datasets
Datasets for Natural Language Processing
- github: https://github.com/karthikncode/nlp-datasets
Blogs
How to read: Character level deep learning
- blog: https://offbit.github.io/how-to-read/
- github: https://github.com/offbit/char-models
Heavy Metal and Natural Language Processing
- part 1: http://www.degeneratestate.org/posts/2016/Apr/20/heavy-metal-and-natural-language-processing-part-1/
Sequence To Sequence Attention Models In PyCNN
https://talbaumel.github.io/Neural+Attention+Mechanism.html
Source Code Classification Using Deep Learning
http://blog.aylien.com/source-code-classification-using-deep-learning/
My Process for Learning Natural Language Processing with Deep Learning
https://medium.com/@MichaelTeifel/my-process-for-learning-natural-language-processing-with-deep-learning-bd0a64a36086
Convolutional Methods for Text
https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f
Word2Vec
Word2Vec Tutorial - The Skip-Gram Model
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
Word2Vec Tutorial Part 2 - Negative Sampling
http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/
Word2Vec Resources
http://mccormickml.com/2016/04/27/word2vec-resources/
演示
AskImage.org - Deep Learning for Answering Questions about Images
- homepage: http://www.askimage.org/
演讲
Navigating Natural Language Using Reinforcement Learning
- youtube: https://www.youtube.com/watch?v=7s-erJbCkaY
其它资源
So, you need to understand language data? Open-source NLP software can help!
- blog: http://entopix.com/so-you-need-to-understand-language-data-open-source-nlp-software-can-help.html
Curated list of resources on building bots
- github: https://github.com/hackerkid/bots
Notes for deep learning on NLP
https://medium.com/@frank_chung/notes-for-deep-learning-on-nlp-94ddfcb45723#.iouo0v7m7