python与机器学习(三)——真正(负)率 / 假正(负)例 / ROC / AUC

读取data.csv文件数据完成:

1.分别计算真正例(TP)、真负例(TN)、假正例(FP)、假负例(FN)数量
2.分别计算各类别(正/负例)的精确率(Precision)、召回率(Recall)、F1值(F1-score)
3.分别计算精确率、召回率、F1-score的宏平均(Macro Average)并且计算准确率(Accuracy)
4.绘制ROC曲线并计算曲线下面积AUC (可使用sklearn包)

其中"data.csv"的部分数据如下所示:
python与机器学习(三)——真正(负)率 / 假正(负)例 / ROC / AUC_第1张图片

1 读取数据

预测概率转换为预测类别:

以0.5为阈值,将预测概率predict_prob列二值化为0/1,即值小于0.5的元素变为0,不小于0.5的元素变为1,建议新生成单独的预测类别数组
注:读取数据的标签中1表示正例,0表示负例

import pandas as pd
import numpy as np
DATA_PATH = 'data.csv'
data = pd.read_csv(DATA_PATH)
def transform(a):
    if a['predict_prob'] < 0.5:
        a.loc['predict_prob'] = 0
    else:
        a.loc['predict_prob'] = 1
    return a
data0 = data.loc[:].apply(transform, axis = 1)
data0

2 计算真正例(TP)、真负例(TN)、假正例(FP)、假负例(FN)数值

def count(data, a, b):
    ans = 0;
    for indexs in data.index:
        if data.loc[indexs, 'predict_prob'] == a and data.loc[indexs, 'label'] == b:
            ans += 1
    return ans;
TP = count(data0, 1, 1)
TN = count(data0, 0, 0)
FP = count(data0, 1, 0)
FN = count(data0, 0, 1)
print(str(TP)+'\n'+str(TN)+'\n'+str(FP)+'\n'+str(FN))

运行结果如下:

348
198
14
9

3 计算各类别(正/负例)的精确率(Precision)、召回率(Recall)、F1值

PP = TP/(TP+FP)
NP = TN/(TN+FN)
PR = TP/(TP+FN)
NR = TN/(TN+FP)
PF1 = 2*(PP*PR/(PP+PR))
NF1 = 2*(NP*NR/(NP+NR))
print('%.4f\n%.4f\n%.4f\n%.4f\n%.4f\n%.4f\n' %(PP, NP, PR, NR, PF1, NF1))

运行结果如下:

0.9613
0.9565
0.9748
0.9340
0.9680
0.9451

4 计算精确率、召回率、F1值的宏平均(Macro Average)并且计算准确率

P = (PP+NP)/2
R = (PR+NR)/2
F1 = (PF1+NF1)/2
A = (TP+TN)/(TP+FP+TN+FN)
print('%.4f\n%.4f\n%.4f\n%.4f'%(P, R, F1, A))

运行结果如下:

0.9589
0.9544
0.9566
0.9596

5 绘制ROC曲线并计算曲线下面积AUC

from sklearn.metrics import roc_curve, auc
import matplotlib as mpl  
import matplotlib.pyplot as plt
def plot_roc(labels, predict_prob):
    false_positive_rate,true_positive_rate,thresholds=roc_curve(labels, predict_prob)
    roc_auc=auc(false_positive_rate, true_positive_rate)
    plt.title('ROC')
    plt.plot(false_positive_rate, true_positive_rate,'b',label='AUC = %0.4f'% roc_auc)
    plt.legend(loc='lower right')
    plt.plot([0,1],[0,1],'r--')
    plt.ylabel('TPR')
    plt.xlabel('FPR')
    plt.show()
    
plot_roc(data['label'], data['predict_prob'])

运行结果如下:
python与机器学习(三)——真正(负)率 / 假正(负)例 / ROC / AUC_第2张图片

你可能感兴趣的:(python与机器学习,python,机器学习,数据分析)