TensorFlow2.X结合OpenCV 实现手势识别

TensorFlow2.X结合OpenCV 实现手势识别

使用Tensorflow 构建卷积神经网络,训练手势识别模型,使用opencv DNN 模块加载模型实时手势识别
效果如下:


先显示下部分数据集图片(0到9的表示,感觉很怪)
TensorFlow2.X结合OpenCV 实现手势识别_第1张图片
构建模型进行训练
数据集地址

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets,layers,optimizers,Sequential,metrics
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
import os 
import pathlib
import random
import matplotlib.pyplot as plt

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'



def read_data(path):
    path_root = pathlib.Path(path)
    # print(path_root)
    # for item in path_root.iterdir():
    #     print(item)
    image_paths = list(path_root.glob('*/*'))
    image_paths = [str(path) for path in image_paths]
    random.shuffle(image_paths)
    image_count = len(image_paths)
    # print(image_count)
    # print(image_paths[:10])

    label_names = sorted(item.name for item in path_root.glob('*/') if item.is_dir())
    # print(label_names)
    label_name_index = dict((name, index) for index, name in enumerate(label_names))
    # print(label_name_index)
    image_labels = [label_name_index[pathlib.Path(path).parent.name] for path in image_paths]
    # print("First 10 labels indices: ", image_labels[:10])
    return image_paths,image_labels,image_count


def preprocess_image(image):
    image = tf.image.decode_jpeg(image, channels=3)
    image = tf.image.resize(image, [100, 100])
    image /= 255.0  # normalize to [0,1] range
    # image = tf.reshape(image,[100*100*3])
    return image

def load_and_preprocess_image(path,label):
    image = tf.io.read_file(path)
    return preprocess_image(image),label

def creat_dataset(image_paths,image_labels,bitch_size):
    db = tf.data.Dataset.from_tensor_slices((image_paths, image_labels))
    dataset = db.map(load_and_preprocess_image).batch(bitch_size)    
    return dataset


def train_model(train_data,test_data):
    #构建模型
    network = keras.Sequential([
            keras.layers.Conv2D(32,kernel_size=[5,5],padding="same",activation=tf.nn.relu),
            keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
            keras.layers.Conv2D(64,kernel_size=[3,3],padding="same",activation=tf.nn.relu),
            keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
            keras.layers.Conv2D(64,kernel_size=[3,3],padding="same",activation=tf.nn.relu),
            keras.layers.Flatten(),
            keras.layers.Dense(512,activation='relu'),
            keras.layers.Dropout(0.5),
            keras.layers.Dense(128,activation='relu'),
            keras.layers.Dense(10)])
    network.build(input_shape=(None,100,100,3))
    network.summary()

    network.compile(optimizer=optimizers.SGD(lr=0.001),
            loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True),
            metrics=['accuracy']
    )
    #模型训练
    network.fit(train_data, epochs = 100,validation_data=test_data,validation_freq=2)  
    network.evaluate(test_data)

    tf.saved_model.save(network,'D:\\code\\PYTHON\\gesture_recognition\\model\\')
    print("保存模型成功")



    # Convert Keras model to ConcreteFunction
    full_model = tf.function(lambda x: network(x))
    full_model = full_model.get_concrete_function(
    tf.TensorSpec(network.inputs[0].shape, network.inputs[0].dtype))

    # Get frozen ConcreteFunction
    frozen_func = convert_variables_to_constants_v2(full_model)
    frozen_func.graph.as_graph_def()

    layers = [op.name for op in frozen_func.graph.get_operations()]
    print("-" * 50)
    print("Frozen model layers: ")
    for layer in layers:
        print(layer)

    print("-" * 50)
    print("Frozen model inputs: ")
    print(frozen_func.inputs)
    print("Frozen model outputs: ")
    print(frozen_func.outputs)

    # Save frozen graph from frozen ConcreteFunction to hard drive
    tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
            logdir="D:\\code\\PYTHON\\gesture_recognition\\model\\frozen_model\\",
            name="frozen_graph.pb",
            as_text=False)
    print("模型转换完成,训练结束")


if  __name__ == "__main__":
    print(tf.__version__)
    train_path = 'D:\\code\\PYTHON\\gesture_recognition\\Dataset'
    test_path = 'D:\\code\\PYTHON\\gesture_recognition\\testdata' 
    image_paths,image_labels,_ = read_data(train_path)
    train_data = creat_dataset(image_paths,image_labels,16)
    image_paths,image_labels,_ = read_data(test_path)
    test_data = creat_dataset(image_paths,image_labels,16)
    train_model(train_data,test_data)
    

OpenCV加载模型,实时检测
这里为了简化检测使用了ROI。

import cv2
from cv2 import dnn
import numpy as np
print(cv2.__version__)
class_name = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
net = dnn.readNetFromTensorflow('D:\\code\\PYTHON\\gesture_recognition\\model\\frozen_model\\frozen_graph.pb')
cap = cv2.VideoCapture(0)
i = 0
while True:
    _,frame= cap.read() 
    src_image = frame
    cv2.rectangle(src_image, (300, 100),(600, 400), (0, 255, 0), 1, 4)
    frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
    pic = frame[100:400,300:600]
    cv2.imshow("pic1", pic)
    # print(pic.shape)
    pic = cv2.resize(pic,(100,100))
    blob = cv2.dnn.blobFromImage(pic,     
                             scalefactor=1.0/225.,
                             size=(100, 100),
                             mean=(0, 0, 0),
                             swapRB=False,
                             crop=False)
    # blob = np.transpose(blob, (0,2,3,1))                         
    net.setInput(blob)
    out = net.forward()
    out = out.flatten()

    classId = np.argmax(out)
    # print("classId",classId)
    print("预测结果为:",class_name[classId])
    src_image =	cv2.putText(src_image,str(classId),(300,100), cv2.FONT_HERSHEY_SIMPLEX, 2,(0,0,255),2,4)
    # cv.putText(img, text, org, fontFace, fontScale, fontcolor, thickness, lineType)
    cv2.imshow("pic",src_image)
    if cv2.waitKey(10) == ord('0'):
        break

小结

这里本质上还是一个图像分类任务。而且,样本数量较少。优化的时候需要做数据增强,还需要防止过拟合。

你可能感兴趣的:(ML&DL,Opencv,python,神经网络,深度学习,tensorflow,图像识别,卷积)