5685. 交替合并字符串
给你两个字符串 word1 和 word2 。请你从 word1 开始,通过交替添加字母来合并字符串。如果一个字符串比另一个字符串长,就将多出来的字母追加到合并后字符串的末尾。
返回 合并后的字符串 。
输入:word1 = "abc", word2 = "pqr"
输出:"apbqcr"
思路
- 通过up进行判断
class Solution {
public:
string mergeAlternately(string word1, string word2) {
int i = 0, j = 0;
string res;
bool up = true;
while (i <= word1.size() && j <= word2.size()) {
if (i < word1.size() && up == true) {
res += word1[i++];
up = false;
} else if (j < word2.size() && up == false) {
res += word2[j++];
up = true;
}
if (i == word1.size() && j == word2.size()) {
break;
} else if (i == word1.size() && j < word2.size()) {
while (j < word2.size()) {
res += word2[j++];
}
} else if (j == word2.size() && i < word1.size()) {
while (i < word1.size()) {
res += word1[i++];
}
}
}
return res;
}
};
5686. 移动所有球到每个盒子所需的最小操作数
有 n 个盒子。给你一个长度为 n 的二进制字符串 boxes ,其中 boxes[i] 的值为 '0' 表示第 i 个盒子是 空 的,而 boxes[i] 的值为 '1' 表示盒子里有 一个 小球。
在一步操作中,你可以将 一个 小球从某个盒子移动到一个与之相邻的盒子中。第 i 个盒子和第 j 个盒子相邻需满足 abs(i - j) == 1 。注意,操作执行后,某些盒子中可能会存在不止一个小球。
返回一个长度为 n 的数组 answer ,其中 answer[i] 是将所有小球移动到第 i 个盒子所需的 最小 操作数。
每个 answer[i] 都需要根据盒子的 初始状态 进行计算。
思路
- 用值为1的下标减去当前下标
vector minOperations(string boxes) {
vector res;
int cnt = 0;
for (int i = 0; i < boxes.size(); i++) {
for (int j = 0; j < boxes.size(); j++) {
int tmp = boxes[j] - '0';
if (tmp == 1) {
cnt += abs(j-i);
}
}
res.push_back(cnt);
cnt = 0;
}
return res;
}
5687.执行乘法运算的最大分数
思路
- 有两种选择,选择最前面的或者最末尾的
- 共选择m个,首选择i,尾选择j,i+j <= m
- 代码从1开始计数, 首就是 nums[i-1], 尾是 nums[n-i]
class Solution {
public:
int maximumScore(vector& ns, vector& ms) {
int m = ms.size();
int n = ns.size();
vector> mem(m + 1, vector(m + 1));
mem[0][0] = 0;
for (int i=1; i<=m; ++i) {
mem[i][0] = mem[i-1][0] + ns[i-1] * ms[i-1]; //从前面选
mem[0][i] = mem[0][i-1] + ns[n-i] * ms[i-1]; //从后面选
}
for (int i=1; i<=m; ++i) {
for (int j=1; i+j<=m; ++j) {
mem[i][j] = max(
mem[i-1][j]+ms[i+j-1]*ns[i-1], //从前面选
mem[i][j-1]+ms[i+j-1]*ns[n-j] //从后面选
);
}
}
int res = INT_MIN;
for (int i=0; i<=m; ++i)
res = max(res, mem[i][m-i]); //从前面选择了i个,从后面选择了m-i个
return res;
}
};
5688.由子序列构造的最长回文串的长度
给你两个字符串 word1 和 word2 ,请你按下述方法构造一个字符串:
从 word1 中选出某个 非空 子序列 subsequence1 。
从 word2 中选出某个 非空 子序列 subsequence2 。
连接两个子序列 subsequence1 + subsequence2 ,得到字符串。
返回可按上述方法构造的最长 回文串 的 长度 。如果无法构造回文串,返回 0 。
字符串 s 的一个 子序列 是通过从 s 中删除一些(也可能不删除)字符而不更改其余字符的顺序生成的字符串。
思路
- 类似于leetcode516. 最长回文子序列
dpi表示从[i,j]的最长回文串的长度,默认dpi = 1;
- 注意i <= j
- 注意首尾字符需要在不同的字符串中
class Solution {
public:
int longestPalindrome(string word1, string word2) {
//首尾分别在word1和word2中
string word3 = word1 + word2;
int mid = word1.size();
return getString(word3, mid);
}
int getString(string s, int mid) {
int n = s.size();
int ans = 0;
vector> dp(n, vector(n));
for (int i = 0; i < n; i++) {
dp[i][i] = 1;
}
for (int i = n-1; i >= 0; i--) {
for (int j = i+1; j < n; j++) {
if (s[i] == s[j]) {
dp[i][j] = dp[i+1][j-1] + 2;
if (i < mid && j >= mid) {//首尾在两个不同的字符串
ans = max(ans, dp[i][j]);
}
} else {
dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
}
}
}
return ans;
}
};