本文整理自 Ongaro 在 Youtube 上的视频。
Raft 的目标(或者说是分布式共识算法的目标)是:保证 log 完全相同地复制到多台服务器上。
只要每台服务器的日志相同,那么,在不同服务器上的状态机以相同顺序从日志中执行相同的命令,将会产生相同的结果。
共识算法的工作就是管理这些日志。
我们假设:
Raft 是基于 Leader 的共识算法,故主要考虑:
优点:只有一个 Leader,简单。
难点:Leader 发生改变时,可能会使系统处于不一致的状态,因此,下一任 Leader 必须进行清理;
我们将从 6 个部分解释 Raft:
开始之前需要了解 Raft 的一些术语。
服务器在任意时间只能处于以下三种状态之一:
系统正常运行时,只有一个 Leader,其余都是 Followers.
状态转换图:
任期
时间被划分成一个个的任期(Term),每个任期都由一个数字来表示任期号,任期号单调递增并且永远不会重复。
一个正常的任期至少有一个 Leader,通常分为两部分:
有些任期可能没有选出 Leader(如图 Term 3),这时候会立即进入下一个任期,再次尝试选出一个 Leader。
每个节点维护一个currentTerm
变量,表示系统中当前任期。currentTerm
必须持久化存储,以便在服务器宕机重启时将其恢复。
**任期非常重要!任期能够帮助 Raft 识别过期的信息。**例如:如果currentTerm = 2
的节点与currentTerm = 3
的节点通信,我们可以知道第一个节点上的信息是过时的。
我们只使用最新任期的信息。后面我们会遇到各种情况,去检测和消除不是最新任期的信息。
Raft 中服务器之间所有类型的通信通过两个 RPC 调用:
RequestVote
:用于选举;AppendEntries
:用于复制 log 和发送心跳;AppendEntries RPC
);electionTimeout
,一般在 100~500ms)后,Follower 没有收到任何 RPC:
当一个节点开始竞选:
currentTerm
RequestVote RPC
索要选票,如果没有收到指定节点的响应,它会反复尝试,直到发生以下三种情况之一:AppendEntries
心跳;electionTimeout
已过):增加currentTerm
,开始新一轮选举;流程图如下:
选举安全性
选举过程需要保证两个特性:安全性(safety)和活性(liveness)。
安全性(safety):一个任期内只会有一个 Leader 被选举出来。需要保证:
votedFor
,以便宕机重启后恢复,否则重启后votedFor
丢失会导致投给别的节点;活性(liveness):确保最终能选出一个 Leader。
问题是:原则上我们可以无限重复分割选票,假如选举同一时间开始,同一时间超时,同一时间再次选举,如此循环。
解决办法很简单:
electionTimeout
)每个节点存储自己的日志副本(log[]
),每条日志记录包含:
**日志必须持久化存储。**一个节点必须先将记录安全写到磁盘,才能向系统中其他节点返回响应。
如果一条日志记录被存储在超过半数的节点上,我们认为该记录已提交(committed
)——这是 Raft 非常重要的特性!如果一条记录已提交,意味着状态机可以安全地执行该记录。
在上图中,第 1-7 条记录被提交,第 8 条尚未提交。
提醒:多数派复制了日志即已提交,这个定义并不精确,我们会在后面稍作修改。
AppendEntries RPC
,等待响应;AppendEntries RPC
中通知已经提交记录的 FollowersRaft 尝试在集群中保持日志较高的一致性。
Raft 日志的 index 和 term 唯一标示一条日志记录。(这非常重要!!!)
AppendEntries
**一致性检查Raft 通过AppendEntries RPC
来检测这两个属性。
AppendEntries RPC
包含新日志记录之前那条记录的索引(prevLogIndex
)和任期(prevLogTerm
);prevLogIndex
和prevLogTerm
匹配,匹配则接收该记录;否则拒绝;当新的 Leader 上任后,日志可能不会非常干净,因为前一任领导可能在完成日志复制之前就宕机了。Raft 对此的处理方式是:无需采取任何特殊处理。
当新 Leader 上任后,他不会立即进行任何清理操作,他将会在正常运行期间进行清理。
原因是当一个新的 Leader 上任时,往往意味着有机器故障了,那些机器可能宕机或网络不通,所以没有办法立即清理他们的日志。在机器恢复运行之前,我们必须保证系统正常运行。
**大前提是 Raft 假设了 Leader 的日志始终是对的。**所以 Leader 要做的是,随着时间推移,让所有 Follower 的日志最终都与其匹配。
但与此同时,Leader 也可能在完成这项工作之前故障,日志会在一段时间内堆积起来,从而造成看起来相当混乱的情况,如下所示:
因为我们已经知道 index 和 term 是日志记录的唯一标识符,这里不再显示日志包含的命令,下同。
如图,这种情况可能出现在 S4 和 S5 是任期 2、3、4 的 Leader,但不知何故,他们没有复制自己的日志记录就崩溃了,系统分区了一段时间,S1、S2、S3 轮流成为了任期 5、6、7 的 Leader,但无法与 S4、S5 通信以进行日志清理——所以我们看到的日志非常混乱。
唯一重要的是,索引 1-3 之间的记录是已提交的(已存在多数派节点),因此我们必须确保留下它们。
其它日志都是未提交的,我们还没有将这些命令传递给状态机,也没有客户端会收到这些执行的结果,所以不管是保留还是丢弃它们都无关紧要。
一旦状态机执行了一条日志里的命令,必须确保其它状态机在同样索引的位置不会执行不同的命令。
Raft 安全性(Safety):如果某条日志记录在某个任期号已提交,那么这条记录必然出现在更大任期号的未来 Leader 的日志中。
这保证了安全性要求:
这决定我们要修改选举程序:
问题来了:我们如何确保选出了一个很好地保存了所有已提交日志的 Leader ?
这有点棘手,举个例子:假设我们要在下面的集群中选出一个新 Leader,但此时第三台服务器不可用。
这种情况下,仅看前两个节点的日志我们无法确认是否达成多数派,故无法确认第五条日志是否已提交。
那怎么办呢?
通过比较日志,在选举期间,选择最有可能包含所有已提交的日志:
RequestVote RPCs
中包含日志信息(最后一条记录的 index 和 term,记为lastIndex
和lastTerm
);(lastTermV > lastTermC) ||
(lastTermV == lastTermC) && (lastIndexV > lastIndexC)
将拒绝投票;(即:V 的任期比 C 的任期新,或任期相同但 V 的日志比 C 的日志更完整);任期 2 的 Leader S1 的 index = 4 日志刚刚被复制到 S3,并且 Leader 可以看到 index = 4 已复制到超过半数的服务器,那么该日志可以提交,并且安全地应用到状态机。
现在,这条记录是安全的,下一任期的 Leader 必须包含此记录,因此 S4 和 S5 都不可能从其它节点那里获得选票:S5 任期太旧,S4 日志太短。
只有前三台中的一台可以成为新的 Leader——S1 当然可以,S2、S3 也可以通过获取 S4 和 S5 的选票成为 Leader。
如图所示的情况,在任期 2 时记录仅写在 S1 和 S2 两个节点上,由于某种原因,任期 3 的 Leader S5 并不知道这些记录,S5 创建了自己的三条记录然后宕机了,然后任期 4 的 Leader S1 被选出,S1 试图与其它服务器的日志进行匹配。因此它复制了任期 2 的日志到 S3。
此时 index=3 的记录时是不安全的。
因为 S1 可能在此时宕机,然后 S5 可能从 S2、S3、S4 获得选票成为任期 5 的 Leader。一旦 S5 成为新 Leader,它将覆盖 index=3-5 的日志,S1-S3 的这些记录都将消失。
我们还要需要一条新的规则,来处理这种情况。
新的选举不足以保证日志安全,我们还需要继续修改 commit 规则。
Leader 要提交一条日志:
如图,回到上面的 Case 2: 当 index = 3 & term = 2 被复制到 S3 时,它还不能提交该记录,必须等到 term = 4 的记录存储在超过半数的节点上,此时 index = 3 和 index = 4 可以认为是已提交。
此时 S5 无法赢得选举了,它无法从 S1-S3 获得选票。
结合新的选举规则和 commit 规则,我们可以保证 Raft 的安全性。
Leader 变更可能导致日志的不一致,这里展示一种可能的情况。
可以从图中看出,Raft 集群中通常有两种不一致的日志:
我们要做的就是清理这两种日志。
新的 Leader 必须使 Follower 的日志与自己的日志保持一致,通过:
Leader 为每个 Follower 保存nextIndex
:
Leader 通过nextIndex
来修复日志。当AppendEntries RPC
一致性检查失败,递减nextIndex
并重试。如下图所示:
对于 a:
nextIndex
= 11,带上日志 index = 10 & term = 6,检查失败;nextIndex
= 10,带上日志 index = 9 & term = 6,检查失败;nextIndex
= 5,带上日志 index = 4 & term = 4,该日志现在匹配,会在 a 中补齐 Leader 的日志。如此往下补齐。对于 b:
会一直检查到nextIndex
= 4 才匹配。值得注意的是,对于 b 这种情况,当 Follower 覆盖不一致的日志时,它将删除所有后续的日志记录(任何无关紧要的记录之后的记录也都是无关紧要的)。如下图所示:
实际上,老的 Leader 可能不会马上消失,例如:网络分区将 Leader 与集群的其余部分分隔,其余部分选举出了一个新的 Leader。问题在于,如果老的 Leader 重新连接,也不知道新的 Leader 已经被选出来,它会尝试作为 Leader 继续提交日志。此时如果有客户端向老 Leader 发送请求,老的 Leader 会尝试存储该命令并向其它节点复制日志——我们必须阻止这种情况发生。
任期就是用来发现过时的 Leader(和 Candidates):
由于新 Leader 的选举会更新超过半数服务器的任期,旧的 Leader 不能提交新的日志,因为它会联系至少一台多数派集群的节点,然后发现自己任期太老,会转为 Follower 继续工作。
这里不打算继续讨论别的极端情况。
客户端只将命令发送到 Leader:
Leader 直到将命令记录、提交和执行到状态机之前,不会做出响应。
这里的问题是如果 Leader 宕机会导致请求超时:
这留下了一个命令可能被执行两次的风险——Leader 可能在执行命令之后但响应客户端之前宕机,此时客户端再去寻找下一个 Leader,同一个命令就会被执行两次——这是不可接受的!
解决办法是:客户端发送给 Leader 的每个命令都带上一个唯一 id
每个命令只会被执行一次,这就是所谓的线性化的关键要素。
随着时间推移,会有机器故障需要我们去替换它,或者修改节点数量,需要有一些机制来变更系统配置,并且是安全、自动的方式,无需停止系统。
系统配置是指:
首先要意识到,我们不能直接从旧配置切换到新配置,这可能会导致矛盾的多数派。
如图,系统以三台服务器的配置运行着,此时我们要添加两台服务器。如果我们直接修改配置,他们可能无法完全在同一时间做到配置切换,这会导致 S1 和 S2 形成旧集群的多数派,而同一时间 S3-S5 已经切换到新配置,这会产生两个集群。
这说明我们必须使用一个两阶段(two-phase)协议。
如果有人告诉你,他可以在分布式系统中一个阶段就做出决策,你应该非常认真地询问他,因为他要么错了,要么发现了世界上所有人都不知道的东西。
Raft 通过共同一致(Joint Consensus)来完成两阶段协议,即:新、旧两种配置上都获得多数派选票。
第一阶段:
AppendEntries RPC
复制到 Follower 中,收到该 Cold+new 的节点立即应用该配置作为当前节点的配置;Cold+new 日志已提交保证了后续任何 Leader 一定有 Cold+new 日志,Leader 选举过程必须获得旧配置中的多数派和新配置中的多数派同时投票。
第二阶段:
AppendEntries RPC
复制到 Follower 中,收到 Cnew 的节点立即应用该配置作为当前节点的配置;