简介: Java异步非阻塞编程的几种方式
一、 从一个同步的Http调用说起
一个很简单的业务逻辑,其他后端服务提供了一个接口,我们需要通过接口调用,获取到响应的数据。
逆地理接口:通过经纬度获取这个经纬度所在的省市区县以及响应的code:
curl-i"http://xxx?latitude=31.08966221524924&channel=amap7a&near=false&longitude=105.13990312814713"
{"adcode":"510722"}
服务端执行,最简单的同步调用方式:
服务端响应之前,IO会阻塞在:
java.net.SocketInputStream#socketRead0 的native方法上:
通过jstack日志,可以发现,此时这个Thread会一直在runable的状态:
"main"#1 prio=5 os_prio=31 tid=0x00007fed0c810000 nid=0x1003 runnable [0x000070000ce14000] java.lang.Thread.State: RUNNABLE
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.socketRead(SocketInputStream.java:116)
at java.net.SocketInputStream.read(SocketInputStream.java:171)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at org.apache.http.impl.conn.LoggingInputStream.read(LoggingInputStream.java:84)
at org.apache.http.impl.io.SessionInputBufferImpl.streamRead(SessionInputBufferImpl.java:137)
at org.apache.http.impl.io.SessionInputBufferImpl.fillBuffer(SessionInputBufferImpl.java:153)
at org.apache.http.impl.io.SessionInputBufferImpl.readLine(SessionInputBufferImpl.java:282)
at org.apache.http.impl.conn.DefaultHttpResponseParser.parseHead(DefaultHttpResponseParser.java:138)
at org.apache.http.impl.conn.DefaultHttpResponseParser.parseHead(DefaultHttpResponseParser.java:56)
at org.apache.http.impl.io.AbstractMessageParser.parse(AbstractMessageParser.java:259)
at org.apache.http.impl.DefaultBHttpClientConnection.receiveResponseHeader(DefaultBHttpClientConnection.java:163)
at org.apache.http.impl.conn.CPoolProxy.receiveResponseHeader(CPoolProxy.java:165)
at org.apache.http.protocol.HttpRequestExecutor.doReceiveResponse(HttpRequestExecutor.java:273)
at org.apache.http.protocol.HttpRequestExecutor.execute(HttpRequestExecutor.java:125)
at org.apache.http.impl.execchain.MainClientExec.execute(MainClientExec.java:272)
at org.apache.http.impl.execchain.ProtocolExec.execute(ProtocolExec.java:185)
at org.apache.http.impl.execchain.RetryExec.execute(RetryExec.java:89)
at org.apache.http.impl.execchain.RedirectExec.execute(RedirectExec.java:110)
at org.apache.http.impl.client.InternalHttpClient.doExecute(InternalHttpClient.java:185)
at org.apache.http.impl.client.CloseableHttpClient.execute(CloseableHttpClient.java:83)
at org.apache.http.impl.client.CloseableHttpClient.execute(CloseableHttpClient.java:108)
at com.amap.aos.async.AsyncIO.blockingIO(AsyncIO.java:207)
.......
线程模型示例:
同步最大的问题是在IO等待的过程中,线程资源没有得到充分的利用,对于大量IO场景的业务吞吐量会有一定限制。
二 、JDK NIO & Future
在JDK 1.5 中,JUC提供了Future抽象:
当然并不是所有的Future都是这样实现的,如
io.netty.util.concurrent.AbstractFuture 就是通过线程轮询去。
这样做的好处是,主线程可以不用等待IO响应,可以去做点其他的,比如说再发送一个IO请求,可以等到一起返回:
"main"#1 prio=5 os_prio=31 tid=0x00007fd7a500b000 nid=0xe03 waiting on condition [0x000070000a95d000] java.lang.Thread.State: WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x000000076ee2d768> (a java.util.concurrent.CountDownLatch$Sync)
at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:836)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:997)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1304)
at java.util.concurrent.CountDownLatch.await(CountDownLatch.java:231)
at org.asynchttpclient.netty.NettyResponseFuture.get(NettyResponseFuture.java:162)
at com.amap.aos.async.AsyncIO.futureBlockingGet(AsyncIO.java:201)
.....
"AsyncHttpClient-2-1"#11 prio=5 os_prio=31 tid=0x00007fd7a7247800 nid=0x340b runnable [0x000070000ba94000] java.lang.Thread.State: RUNNABLE
at sun.nio.ch.KQueueArrayWrapper.kevent0(Native Method)
at sun.nio.ch.KQueueArrayWrapper.poll(KQueueArrayWrapper.java:198)
at sun.nio.ch.KQueueSelectorImpl.doSelect(KQueueSelectorImpl.java:117)
at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:86)
- locked <0x000000076eb00ef0> (a io.netty.channel.nio.SelectedSelectionKeySet)
- locked <0x000000076eb00f10> (a java.util.Collections$UnmodifiableSet)
- locked <0x000000076eb00ea0> (a sun.nio.ch.KQueueSelectorImpl)
at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:97)
at io.netty.channel.nio.NioEventLoop.select(NioEventLoop.java:693)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:353)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:140)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
at java.lang.Thread.run(Thread.java:748)
主线程在等待结果返回过程中依然需要等待,没有根本解决此问题。
三 、使用Callback回调方式
第二节中,依然需要主线程等待,获取结果,那么可不可以在主线程完成发送请求后,再也不用关心这个逻辑,去执行其他的逻辑?那就可以使用Callback机制。
如此一来,主线程再也不需要关心发起IO后的业务逻辑,发送完请求后,就可以彻底去干其他事情,或者回到线程池中再供调度。如果是HttpServer,那么需要结合Servlet 3.1的异步Servlet。
使用Callback方式,从线程模型中看,发现线程资源已经得到了比较充分的利用,整个过程中已经没有线程阻塞。
四、 Callback hell
回调地狱,当Callback的线程还需要执行下一个IO调用的时候,这个时候进入回调地狱模式。
典型的应用场景如,通过经纬度获取行政区域adcode(逆地理接口),然后再根据获得的adcode,获取当地的天气信息(天气接口)。
在同步的编程模型中,几乎不会涉及到此类问题。
Callback方式的核心缺陷
五、 JDK 1.8 CompletableFuture
那么有没有办法解决Callback Hell的问题?当然有,JDK 1.8中提供了CompletableFuture,先看看它是怎么解决这个问题的。
将逆地理的Callback逻辑,封装成一个独立的CompletableFuture,当异步线程回调时,调用 future.complete(T) ,将结果封装。
将天气执行的Call逻辑,也封装成为一个独立的CompletableFuture ,完成之后,逻辑同上。
compose衔接,whenComplete输出:
每一个IO操作,均可以封装为独立的CompletableFuture,从而避免回调地狱。
CompletableFuture,只有两个属性:
- result:Future的执行结果 (Either the result or boxed AltResult)。
- stack:操作栈,用于定义这个Future接下来操作的行为 (Top of Treiber stack of dependent actions)。
weatherFuture这个方法是如何被调用的呢?
通过堆栈可以发现,是在
reverseCodeFuture.complete(result) 的时候,并且也将获得的adcode作为参数执行接下来的逻辑。
这样一来,就完美解决回调地狱问题,在主的逻辑中,看起来像是在同步的进行编码。
六、 Vert.x Future
Info-Service中,大量使用的 Vert.x Future 也是类似的解决的方案,不过设计上使用Handler的概念。
核心执行的逻辑差不多:
这当然不是Vertx的全部,当然这是题外话了。
七 、Reactive Streams
异步编程对吞吐量以及资源有好处,但是有没有统一的抽象去解决此类问题内,答案是 Reactive Streams。
核心抽象:Publisher Subscriber Processor Subscription ,整个包里面,只有这四个接口,没有实现类。
在JDK 9里面,已经被作为一种规范封装到 java.util.concurrent.Flow :
一个简单的例子:
八、 Reactor & Spring 5 & Spring WebFlux
Flux & Mono
作者:开发者小助手_LS
原文链接
本文为阿里云原创内容,未经允许不得转载