ZOJ-3593 One Person Game 概率DP

  题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3593

  带环的概率DP一般的做法是求出转移方程,然后高斯消元解方程。但是这里的环比较特殊,都是指向f[0]。

  此题的转移方程为:f[i]=Σ(f[i+k]*p[k])+f[0]*p[0]+1.

  我们可以设 f[i]=A[i]*f[0]+B[i].带入右边有:

                f[i]=Σ(A[i+k]*f[0]*p[k]+B[i+k]*p[k])+f[0]*p[0]+1.

              ->  f[i]=Σ(A[i+k]*p[k]+p[0])*f[0]+B[i+k]*p[k]+1.

  可以得到A[i]=A[i+k]*p[k]+p[0],B[i]=B[i+k]*p[k]+1,退出A[0]和B[0]就可以得到f[0]了。

 1 //STATUS:C++_AC_0MS_196KB

 2 #include <functional>

 3 #include <algorithm>

 4 #include <iostream>

 5 //#include <ext/rope>

 6 #include <fstream>

 7 #include <sstream>

 8 #include <iomanip>

 9 #include <numeric>

10 #include <cstring>

11 #include <cassert>

12 #include <cstdio>

13 #include <string>

14 #include <vector>

15 #include <bitset>

16 #include <queue>

17 #include <stack>

18 #include <cmath>

19 #include <ctime>

20 #include <list>

21 #include <set>

22 #include <map>

23 using namespace std;

24 //#pragma comment(linker,"/STACK:102400000,102400000")

25 //using namespace __gnu_cxx;

26 //define

27 #define pii pair<int,int>

28 #define mem(a,b) memset(a,b,sizeof(a))

29 #define lson l,mid,rt<<1

30 #define rson mid+1,r,rt<<1|1

31 #define PI acos(-1.0)

32 //typedef

33 typedef __int64 LL;

34 typedef unsigned __int64 ULL;

35 //const

36 const int N=510;

37 const int INF=0x3f3f3f3f;

38 const int MOD=10007,STA=8000010;

39 const LL LNF=1LL<<55;

40 const double EPS=1e-14;

41 const double OO=1e30;

42 const int dx[4]={-1,0,1,0};

43 const int dy[4]={0,1,0,-1};

44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};

45 //Daily Use ...

46 inline int sign(double x){return (x>EPS)-(x<-EPS);}

47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}

48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}

49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}

50 template<class T> inline T Min(T a,T b){return a<b?a:b;}

51 template<class T> inline T Max(T a,T b){return a>b?a:b;}

52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}

53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}

54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}

55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}

56 //End

57 

58 double p[40];

59 double A[N],B[N];

60 int T,n;

61 

62 int main(){

63  //   freopen("in.txt","r",stdin);

64     int i,j,k;

65     int k1,k2,k3,a,b,c;

66     scanf("%d",&T);

67     while(T--)

68     {

69         scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);

70         mem(p,0);

71         for(i=1;i<=k1;i++){

72             for(j=1;j<=k2;j++){

73                 for(k=1;k<=k3;k++){

74                     if(i==a && j==b && k==c)p[0]=1;

75                     else p[i+j+k]+=1;

76                 }

77             }

78         }

79         for(i=0;i<=k1+k2+k3;i++)p[i]/=k1*k2*k3;

80         for(i=n;i>=0;i--){

81             A[i]=p[0],B[i]=1;

82             for(j=1;j<=k1+k2+k3 && i+j<=n;j++){

83                 A[i]+=A[i+j]*p[j];

84                 B[i]+=B[i+j]*p[j];

85             }

86         }

87 

88         printf("%.15lf\n",B[0]/(1-A[0]));

89     }

90     return 0;

91 }

 

你可能感兴趣的:(game)