题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3593
带环的概率DP一般的做法是求出转移方程,然后高斯消元解方程。但是这里的环比较特殊,都是指向f[0]。
此题的转移方程为:f[i]=Σ(f[i+k]*p[k])+f[0]*p[0]+1.
我们可以设 f[i]=A[i]*f[0]+B[i].带入右边有:
f[i]=Σ(A[i+k]*f[0]*p[k]+B[i+k]*p[k])+f[0]*p[0]+1.
-> f[i]=Σ(A[i+k]*p[k]+p[0])*f[0]+B[i+k]*p[k]+1.
可以得到A[i]=A[i+k]*p[k]+p[0],B[i]=B[i+k]*p[k]+1,退出A[0]和B[0]就可以得到f[0]了。
1 //STATUS:C++_AC_0MS_196KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //#pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=510; 37 const int INF=0x3f3f3f3f; 38 const int MOD=10007,STA=8000010; 39 const LL LNF=1LL<<55; 40 const double EPS=1e-14; 41 const double OO=1e30; 42 const int dx[4]={-1,0,1,0}; 43 const int dy[4]={0,1,0,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 double p[40]; 59 double A[N],B[N]; 60 int T,n; 61 62 int main(){ 63 // freopen("in.txt","r",stdin); 64 int i,j,k; 65 int k1,k2,k3,a,b,c; 66 scanf("%d",&T); 67 while(T--) 68 { 69 scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c); 70 mem(p,0); 71 for(i=1;i<=k1;i++){ 72 for(j=1;j<=k2;j++){ 73 for(k=1;k<=k3;k++){ 74 if(i==a && j==b && k==c)p[0]=1; 75 else p[i+j+k]+=1; 76 } 77 } 78 } 79 for(i=0;i<=k1+k2+k3;i++)p[i]/=k1*k2*k3; 80 for(i=n;i>=0;i--){ 81 A[i]=p[0],B[i]=1; 82 for(j=1;j<=k1+k2+k3 && i+j<=n;j++){ 83 A[i]+=A[i+j]*p[j]; 84 B[i]+=B[i+j]*p[j]; 85 } 86 } 87 88 printf("%.15lf\n",B[0]/(1-A[0])); 89 } 90 return 0; 91 }