Description
Input
Output
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
//很好的一道拓扑排序题目,
#include <iostream>
#include <stack>
#include <string.h>
#include <stdio.h>
#define N 33
using namespace std;
int main()
{ freopen("in.txt","r",stdin);
int i,j,n,m,t,record;
short int x,y;
bool e[N][N],use[N];
int v[N],tv[N],re[N];
char h[133],a,c,b;
bool f,f1,f2;
for(j=1,i='A';i<='Z';i++)
h[i]=j++;
stack<int>St;
while(scanf("%d%d",&n,&m),n||m)
{
while(!St.empty())
St.pop();
memset(v,0,sizeof(v));
memset(e,0,sizeof(e));
memset(use,0,sizeof(use));
getchar();t=0;
f1=f2=1;
for(i=1;i<=m;i++)
{
scanf("%c%c%c",&a,&c,&b);getchar();
if(f1==0||f2==0)
continue;
x=h[a];y=h[b];
if(!e[x][y])//确认加人的是条新边
{
if(!use[x])//确认该点是否出现过
{
t++;
use[x]=1;
}
if(!use[y])//确认该点是否出现过
{
t++;
use[y]=1;
}
e[x][y]=1;
v[y]++;//计算点的入度
for(j=1;j<=n;j++)
{ tv[j]=v[j];
if(use[j]&&!tv[j])//如果该点存在,且入度为0,则入栈。
St.push(j);
} f=1;
if(St.size()>1)//判断拓扑排序起点是否唯一
f=0;
int index=0;
while(!St.empty())
{
int temp=St.top();//拓扑起点
St.pop(); //删除该点
re[index++]=temp;
for(j=1;j<=n;j++)
{
if(e[temp][j])
{
tv[j]--; //删除以该点为起始的有向边
if(!tv[j])
St.push(j);
}
}
if(St.size()>1)//判断拓扑排序起点是否唯一
f=0;
}
for(j=1;j<=n;j++)
if(tv[j]) //说明存在环了
{
f1=0;record=i;
break;
}
if(t==n&&f&&f1)//开始时f1忘记加进来了,有环时就不再往下做了。
{
f2=0;record=i;
continue;
}
}
}
if(!f2)
{
printf("Sorted sequence determined after %d relations: ",record);
for(i=0;i<n;i++)
printf("%c",re[i]+64);
printf(".\n");
}else if(!f1)
{
printf("Inconsistency found after %d relations.\n",record);
}else
{
printf("Sorted sequence cannot be determined.\n");
}
}
return 0;
}
//今天再次看了下Bellman Ford 算法,理解加深了些了!
时隔几个月、再次写下这题
#include <iostream> #include <stdio.h> #include <queue> #include <stack> #include <set> #include <vector> #include <string.h> #include <algorithm> using namespace std; char rc[29]; int temp[29]; int in[29]; vector<int> ve[29]; int n,cnt; int topsort() { stack<int> S; int i,id=0; bool f=1; for(i=0;i<n;i++) { temp[i]=in[i]; if(in[i]==0) S.push(i); } if(S.size()>1) f=0; int d,l; while(!S.empty()) { d=S.top();S.pop(); rc[id++]=(char)d+'A'; for(l=ve[d].size(),i=0;i<l;i++) if(--temp[ve[d][i]]==0) S.push(ve[d][i]); if(S.size()>1) f=0; } rc[id]='\0'; for(i=0;i<n;i++) if(temp[i]) return -1; if(f&&id==n) return 1; return 0; } int main() { int m,i; char op[5]; int a,b; int flag,p,k; while(scanf("%d %d",&n,&m),n) { memset(in,0,sizeof(in)); cnt=p=k=0; for(i=0;i<m;i++) { scanf("%s",op); a=op[0]-'A'; b=op[2]-'A'; //if(ve[a].size()==0) cnt++; // if(ve[b].size()==0) cnt++; ve[a].push_back(b); in[b]++; if(p==0) flag=topsort(); if(p==0) { if(flag==-1) { k=i+1; p=-1; } if(flag==1) { k=i+1; p=1; } } } if(p==1) printf("Sorted sequence determined after %d relations: %s.\n",k,rc); else if(p==0) printf("Sorted sequence cannot be determined.\n"); else printf("Inconsistency found after %d relations.\n",k); for(i=0;i<n;i++) ve[i].clear(); } return 0; }