基于hadoop的多个reduce 输出

import java.io.File;
import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.lib.MultipleTextOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class MultipOutputWordCount extends Configured implements Tool {
	/*
	 * Mapper<Object, Text, Text, IntWritable>
	 * Object ,读取的字节偏移量
	 * Text Map读取的文本行
	 * Text Map的输出Key
	 * IntWritable 的输出Value
	 */
	public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
		private final static IntWritable one = new IntWritable(1);
		private Text word = new Text();

		public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
			//一行行读取文件内容,一行行处理文件
			StringTokenizer itr = new StringTokenizer(value.toString());//对输入行切词,eg:Hello World,Hello Hadoop
			while (itr.hasMoreTokens()) {
				word.set(itr.nextToken());
				context.write(word, one);//<Hello,1>,<World,1>,<Hello,1>,<Hadoop,1>
			}
		}
	}

	/**
	 *   Reducer<Text, IntWritable, Text, IntWritable> 
	 * Text:Reduce 输入Key
	 * IntWritable:Reduce的输入Value
	 * Text: Reduce 输出Key 默认类型
	 * IntWritable,输入Value,默认类型LongWritable
	 */
	public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
		private IntWritable result = new IntWritable();
		@SuppressWarnings("rawtypes")
		private MultipleOutputs multipleOutputs;

		protected void setup(Context context) throws IOException, InterruptedException {
			multipleOutputs =new MultipleOutputs<Text,IntWritable>(context);
		}
		
		protected void cleanup(Context context) throws IOException,
				InterruptedException {
			multipleOutputs.close();
		}
		@SuppressWarnings("unchecked")
		public void reduce(Text key, Iterable<IntWritable> values,
				Context context) throws IOException, InterruptedException {
			int sum = 0;
			for (IntWritable val : values) {
				sum += val.get();
			}
			result.set(sum);
			multipleOutputs.write(NullWritable.get(), new Text(key.toString()+":"+result), "1");
			multipleOutputs.write(NullWritable.get(), key, "2");
			multipleOutputs.write(NullWritable.get(), "我是你大爷", "3");
		}
	}
	
	public static class MultipOutputWordFormat extends MultipleTextOutputFormat<Text, IntWritable>{
		
	}

	public static void main(String[] args) throws Exception {
		System.exit(ToolRunner.run(new MultipOutputWordCount(), args));
	}

	@Override
	public int run(String[] args) throws Exception {
		File jarFile = EJob.createTempJar("bin");
		ClassLoader classLoader = EJob.getClassLoader();
		Thread.currentThread().setContextClassLoader(classLoader);
		//Hadoop 运行环境
		Configuration conf = new Configuration();
		conf.set("mapred.job.tracker", "bfdbjc1:12001");
		
		//任务参数设置
		  //a.创建任务,并设置名称,以便跟踪
		Job job = new Job(conf, "word count");
		  //b.运行主类,Map类,Reduce类
		job.setJarByClass(MultipOutputWordCount.class);
		job.setMapperClass(MultipOutputWordCount.TokenizerMapper.class);
		job.setReducerClass(MultipOutputWordCount.IntSumReducer.class);
		//下面两行不需要写,Map默认输出类型
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);
		  //c.设置Reduce输入输出类型,Map默认出及Reduce默认输入是<Text,IntWritable>
		job.setOutputKeyClass(NullWritable.class);
		job.setOutputValueClass(Text.class);
		
		//HDFS输入,如果是路径默认读取路径下所有文件.
		FileInputFormat.addInputPath(job, new Path("hdfs://bfdbjc1:12000/user/work/a.txt"));
		//reduce 输出路径
		FileOutputFormat.setOutputPath(job, new Path("hdfs://bfdbjc1:12000/user/work/output/2da1"));
		
		//Eclipse 本地提交
		((JobConf) job.getConfiguration()).setJar(jarFile.toString());
		
		//等待任务运行完成
		 job.waitForCompletion(true);
		 return 0;
	}
}

 

你可能感兴趣的:(hadoop,reduce,输出,多个)