java-并发原理

  1. 理论

======

1.1 并发问题

原子性

分时复用引起

可见性

CPU和缓存引起

有序性

cpu的乱序执行和编译器的指令重排序引起

  • 编译器优化的重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。
  • 指令级并行的重排序。现代处理器采用了指令级并行技术(Instruction-Level Parallelism, ILP)来将多条指令重叠
  • 执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。

1.2 锁

锁从宏观上分类,分为悲观锁与乐观锁。

乐观锁

乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,采取在写时先读出当前版本号,然后加锁操作(比较跟上一次的版本号,如果一样则更新),如果失败则要重复读-比较-写的操作。
java中的乐观锁基本都是通过CAS操作实现的,CAS是一种更新的原子操作,比较当前值跟传入值是否一样,一样则更新,否则失败。

悲观锁

悲观锁是就是悲观思想,即认为写多,遇到并发写的可能性高,每次去拿数据的时候都认为别人会修改,所以每次在读写数据的时候都会上锁,这样别人想读写这个数据就会block直到拿到锁。java中的悲观锁就是Synchronized,AQS框架下的锁则是先尝试cas乐观锁去获取锁,获取不到,才会转换为悲观锁,如RetreenLock。

1.3 缓存

缓存一致性

在多种类型微架构平台上,又是如何解决缓存不一致性问题的呢?这是众多CPU厂商必须解决的问题。为了解决前面提到的缓存数据不一致的问题,人们提出过很多方案,通常来说有以下2种方案:

  1. 通过在总线加LOCK#锁的方式;
  2. 通过缓存一致性协议(Cache Coherence Protocol);

总线加Lock

当一个 CPU 对其缓存中的数据进行操作的时候,往总线中发送一个 Lock 信号。其他处理器的请求将会被阻塞,那么该处理器可以独占共享内存。总线锁相当于把 CPU 和内存之间的通信锁住了,所以这种方式会导致 CPU 的性能下降

缓存一致性协议

处理器上有一套完整的协议,来保证 Cache 的一致性,比较经典的应该就是MESI 协议了,它的方法是在 CPU 缓存中保存一个标记位,这个标记为有四种状态

  • M(Modified) 修改缓存,当前 CPU 缓存已经被修改,表示已经和内存中的数据不一致了
  • I(Invalid) 失效缓存,说明 CPU 的缓存已经不能使用了
  • E(Exclusive) 独占缓存,当前 cpu 的缓存和内存中数据保持一致,而且其他处理器没有缓存该数据
  • S(Shared) 共享缓存,数据和内存中数据一致,并且该数据存在多个 cpu缓存中

Cache一致性流量

这要从SMP(对称多处理器)架构说起,下图大概表明了SMP的结构:

其意思是 所有的CPU会共享一条系统总线(BUS),靠此总线连接主存。每个核都有自己的一级缓存,各核相对于BUS对称分布,因此这种结构称为“对称多处理器”。

CAS的全称为Compare-And-Swap,是一条CPU的原子指令,其作用是让CPU比较后原子地更新某个位置的值,经过调查发现,其实现方式是基于硬件平台的汇编指令,就是说CAS是靠硬件实现的

例如:Core1和Core2可能会同时把主存中某个位置的值Load到自己的L1 Cache中,当Core1在自己的L1 Cache中修改这个位置的值时,会通过总线,使Core2中L1 Cache对应的值“失效”,而Core2一旦发现自己L1 Cache中的值失效(称为Cache命中缺失)则会通过总线从内存中加载该地址最新的值,大家通过总线的来回通信称为“Cache一致性流量”,因为总线被设计为固定的“通信能力”,如果Cache一致性流量过大,总线将成为瓶颈。而当Core1和Core2中的值再次一致时,称为“Cache一致性”,从这个层面来说,锁设计的终极目标便是减少Cache一致性流量。

而CAS恰好会导致Cache一致性流量,如果有很多线程都共享同一个对象,当某个Core CAS成功时必然会引起总线风暴,这就是所谓的本地延迟,本质上偏向锁就是为了消除CAS,降低Cache一致性流量。

1.4 cas

CAS的全称为Compare-And-Swap,直译就是对比交换。是一条CPU的原子指令cmpxchgl,其作用是让CPU先进行比较两个值是否相等,然后原子地更新某个位置的值,经过调查发现,其实现方式是基于硬件平台的汇编指令,就是说CAS是靠硬件实现的,JVM只是封装了汇编调用,那些AtomicInteger类便是使用了这些封装后的接口。   简单解释:CAS操作需要输入两个数值,一个旧值(期望操作前的值)和一个新值,在操作期间先比较下在旧值有没有发生变化,如果没有发生变化,才交换成新值,发生了变化则不交换。

CAS 方式为乐观锁,synchronized 为悲观锁。因此使用 CAS 解决并发问题通常情况下性能更优。

但使用 CAS 方式也会有几个问题:

  • ABA问题

因为CAS需要在操作值的时候,检查值有没有发生变化,比如没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时则会发现它的值没有发生变化,但是实际上却变化了。

ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加1,那么A->B->A就会变成1A->2B->3A。

  1. JVM模型

=========

2.1 java内存模型

并发模型

在并发编程中,需要解决两个关键问题:

  • 线程之间如何通信;
  • 线程之间如何同步;

线程通信是指线程之间以何种机制来交换信息。在命令式编程中,线程之间的通信机制有两种:共享内存和消息传递。

  • 在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信。
  • 在消息传递的并发模型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信。

线程同步是指程序用于控制不同线程之间操作发生相对顺序的机制。

  • 在共享内存的并发模型里,同步是显式进行的。程序员必须显式指定某个方法或某段代码需要在线程之间互斥执行。
  • 在消息传递的并发模型里,由于消息的发送必须在消息的接收之前,因此同步是隐式进行的。

Java的并发采用的是共享内存模型,Java线程之间的通信总是隐式进行,整个通信过程对程序员完全透明。如果你想设计表现良好的并发程序,理解Java内存模型是非常重要的。Java内存模型规定了如何和何时可以看到由其他线程修改过后的共享变量的值,以及在必须时如何同步的访问共享变量。

JMM

缓存一致性问题、处理器器优化的指令重排问题是硬件的不断升级导致的。那么,有没有什么机制可以很好的解决上面的这些问题呢?
最简单直接的做法就是废除处理器和处理器的优化技术、废除CPU缓存,让CPU直接和主存交互。但是,这么做虽然可以保证多线程下的并发问题。但是,这就有点因噎废食了。
所以,为了保证并发编程中可以满足原子性、可见性及有序性。有一个重要的概念,那就是——内存模型,定义了共享内存系统中多线程程序读写操作行为的规范。
通过这些规则来规范对内存的读写操作,从而保证指令执行的正确性。它与处理器有关、与缓存有关、与并发有关、与编译器也有关。它解决了CPU多级缓存、处理器优化、指令重排等导致的内存访问问题,保证了并发场景下的一致性、原子性和有序性。

Java内存模型(Java Memory Model ,JMM)就是一种符合内存模型规范的,屏蔽了各种硬件和操作系统的访问差异的,保证了Java程序在各种平台下对内存的访问都能保证效果一致的机制及规范。Java内存模型规定了

  • 所有的变量都存储在主内存中
  • 每条线程还有自己的工作内存,线程的工作内存中保存了该线程中用到的变量的主内存副本拷贝,线程对变量的所有操作都必须在工作内存中进行,而不能直接读写主内存。
  • 不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量的传递均需要自己的工作内存和主存之间进行数据同步进行。

而JMM就作用于工作内存和主存之间数据同步过程。他规定了如何做数据同步以及什么时候做数据同步。 特别需要注意的是,主内存和工作内存与JVM内存结构中的Java堆、栈、方法区等并不是同一个层次的内存划分,无法直接类比。 再来总结下,JMM是一种规范,规范了Java虚拟机与计算机内存是如何协同工作的,目的是解决由于多线程通过共享内存进行通信时,存在的本地内存数据不一致、编译器会对代码指令重排序、处理器会对代码乱序执行等带来的问题。目的是保证并发编程场景中的原子性、可见性和有序性。
所以,如果你想设计表现良好的并发程序,理解Java内存模型是非常重要的。Java内存模型规定了如何和何时可以看到由其他线程修改过后的共享变量的值,以及在必须时如何同步的访问共享变量。

JMM抽象

在Java中,所有实例域、静态域和数组元素存储在堆内存中,堆内存在线程之间共享。局部变量(Local variables),方法定义参数(formal method parameters)和异常处理器参数(exception handler parameters) 不会在线程之间共享,它们不会有内存可见性问题,也不受内存模型的影响。
Java线程之间的通信由Java内存模型(JMM)控制,JMM决定一个线程对共享变量的写入何时对另一个线程可见。从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:

线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。本地内存是JMM的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。

从上图来看,线程A与线程B之间如要通信的话,必须要经历下面2个步骤:

首先,线程A把本地内存A中更新过的共享变量刷新到主内存中去; 然后,线程B到主内存中去读取线程A之前已更新过的共享变量;

内存屏障

为了保证内存可见性,Java 编译器在生成指令序列的适当位置会插入内存屏障指令来禁止特定类型的处理器重排序。JMM 把内存屏障指令分为下列四类:

原语

java内存模型告诉我们通过使用关键词 “synchronized” 或 “volatile” 可以让Java保证某些约束:

  • “volatile” — 保证读写的都是主内存的变量。
  • “synchronized” — 保证在块开始时都同步主内存的值到工作内存,而块结束时将变量同步回主内存。

所以,在编译器各种优化及多种类型的微架构平台上,Java语言规范制定者试图创建一个虚拟的概念并传递到Java程序员,让他们能够在这个虚拟的概念上写出线程安全的程序来,而编译器实现者会根据Java语言规范中的各种约束在不同的平台上达到Java程序员所需要的线程安全这个目的。

2.2 java对象模型

对象结构

在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。下图是普通对象实例与数组对象实例的数据结构:

对象头

HotSpot虚拟机的对象头包括两部分信息:

  • markword
    第一部分markword,用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等,这部分数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32bit和64bit,官方称它为“MarkWord”。
  • klass
    对象头的另外一部分是klass类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例.
  • 数组长度(只有数组对象有)
    如果对象是一个数组, 那在对象头中还必须有一块数据用于记录数组长度.

实例数据

实例数据部分是对象真正存储的有效信息,也是在程序代码中所定义的各种类型的字段内容。无论是从父类继承下来的,还是在子类中定义的,都需要记录起来。

对齐填充

第三部分对齐填充并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于HotSpot VM的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说,就是对象的大小必须是8字节的整数倍。而对象头部分正好是8字节的倍数(1倍或者2倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。

对象大小计算

要点

  1. 在32位系统下,存放Class指针的空间大小是4字节,MarkWord是4字节,对象头为8字节。
  2. 在64位系统下,存放Class指针的空间大小是8字节,MarkWord是8字节,对象头为16字节。
  3. 64位开启指针压缩的情况下,存放Class指针的空间大小是4字节,MarkWord是8字节,对象头为12字节。 数组长度4字节+数组对象头8字节(对象引用4字节(未开启指针压缩的64位为8字节)+数组markword为4字节(64位未开启指针压缩的为8字节))+对齐4=16字节。
  4. 静态属性不算在对象大小内。

markword

markword在不同锁状态下的结构 markword的最后两位存储了锁的标志位,01是初始状态,未加锁,其对象头里存储的是对象本身的哈希码,随着锁级别的不同,对象头里会存储不同的内容。
偏向锁存储的是当前占用此对象的线程ID;
而轻量级则存储指向线程栈中锁记录的指针。
从这里我们可以看到,“锁”这个东西,可能是个锁记录+对象头里的引用指针(判断线程是否拥有锁时将线程的锁记录地址和对象头里的指针地址比较),也可能是对象头里的线程ID(判断线程是否拥有锁时将线程的ID和对象头里存储的线程ID比较)。

线程栈的Lock Record

在线程进入同步代码块的时候,如果此同步对象没有被锁定,即它的锁标志位是01,则虚拟机首先在当前线程的栈中创建我们称之为“锁记录(Lock Record)”的空间,用于存储锁对象的Mark Word的拷贝,官方把这个拷贝称为Displaced Mark Word。整个Mark Word及其拷贝至关重要。
Lock Record是线程私有的数据结构,每一个线程都有一个可用Lock Record列表,同时还有一个全局的可用列表。每一个被锁住的对象Mark Word都会和一个Lock Record关联(对象头的MarkWord中的Lock Word指向Lock Record的起始地址),同时Lock Record中有一个Owner字段存放拥有该锁的线程的唯一标识(或者object mark word),表示该锁被这个线程占用。

将object mark word里的轻量级锁指针指向lock record所在的stack指针,作用是让其他线程知道,该object monitor已被占用。lock record里的owner指针指向object mark word的作用是为了在接下里的运行过程中,识别哪个对象被锁住了。

jvm unlock同样使用了CAS来验证object mark word在持有锁到释放锁之间,有无被其他线程访问。 如果其他线程在持有锁这段时间里,尝试获取过锁,则可能自身被挂起,而mark word的重量级锁指针也会被相应修改。 此时,unlock后就需要唤醒被挂起的线程。

为什么升级为轻量锁时要把对象头里的Mark Word复制到线程栈的锁记录中呢? 因为在申请对象锁时 需要以该值作为CAS的比较条件,同时在升级到重量级锁的时候,能通过这个比较判定是否在持有锁的过程中此锁被其他线程申请过,如果被其他线程申请了,则在释放锁的时候要唤醒被挂起的线程。

  1. JVM实现

=========

3.1 volatile

  • 作用:可见性和防止指令重排序
  • 实现: 字节码:ACC_VOLATILE,
    JVM: 内存屏障:loadloadbarrier/loadstorebarrier/storeloadbarrier/storestorebarrier
    操作系统: lock指令

消除缓存行的伪共享

除了我们在代码中使用的同步锁和jvm自己内置的同步锁外,还有一种隐藏的锁就是缓存行,它也被称为性能杀手。
在多核cup的处理器中,每个cup都有自己独占的一级缓存、二级缓存,甚至还有一个共享的三级缓存,为了提高性能,cpu读写数据是以缓存行为最小单元读写的;32位的cpu缓存行为32字节,64位cup的缓存行为64字节,这就导致了一些问题。
例如,多个不需要同步的变量因为存储在连续的32字节或64字节里面,当需要其中的一个变量时,就将它们作为一个缓存行一起加载到某个cup-1私有的缓存中(虽然只需要一个变量,但是cpu读取会以缓存行为最小单位,将其相邻的变量一起读入),被读入cpu缓存的变量相当于是对主内存变量的一个拷贝,也相当于变相的将在同一个缓存行中的几个变量加了一把锁,这个缓存行中任何一个变量发生了变化,当cup-2需要读取这个缓存行时,就需要先将cup-1中被改变了的整个缓存行更新回主存(即使其它变量没有更改),然后cup-2才能够读取,而cup-2可能需要更改这个缓存行的变量与cpu-1已经更改的缓存行中的变量是不一样的,所以这相当于给几个毫不相关的变量加了一把同步锁;
为了防止伪共享,不同jdk版本实现方式是不一样的:

  1. 在jdk1.7之前会 将需要独占缓存行的变量前后添加一组long类型的变量,依靠这些无意义的数组的填充做到一个变量自己独占一个缓存行;
  2. 在jdk1.7因为jvm会将这些没有用到的变量优化掉,所以采用继承一个声明了好多long变量的类的方式来实现;
  3. 在jdk1.8中通过添加sun.misc.Contended注解来解决这个问题,若要使该注解有效必须在jvm中添加以下参数: -XX:-RestrictContended sun.misc.Contended注解会在变量前面添加128字节的padding将当前变量与其他变量进行隔离

3.2 synchronized

作用:原子性
实现:
 字节码:monitorenter/monitorexit
 jvm:锁升级
  new
  偏向锁
   对象头的markword标记线程id
  自旋锁/轻量级锁/无锁
   本地线程会在栈中生成一个record,cas方式存入对象头
   aba问题-version
  重量级锁
   操作系统级别的线程等待 操作系统: lock comxchg 指令

  • 三种使用方式
  1. 修饰实例方法,作用于当前实例加锁,进入同步代码前要获得当前实例的锁
  2. 静态方法,作用于当前类对象加锁,进入同步代码前要获得当前类对象的锁
  3. 修饰代码块,指定加锁对象,对给定对象加锁,进入同步代码库前要获得给定对象的锁。

锁的类型

轻量级锁是为了在线程交替执行同步块时提高性能,而偏向锁则是在只有一个线程执行同步块时进一步提高性能。

偏向锁

偏向锁是JDK6中的重要引进,因为HotSpot作者经过研究实践发现,在大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,为了让线程获得锁的代价更低,引进了偏向锁。
偏向锁是在单线程执行代码块时使用的机制,如果在多线程并发的环境下(即线程A尚未执行完同步代码块,线程B发起了申请锁的申请),则一定会转化为轻量级锁或者重量级锁。
引入偏向锁主要目的是:为了在没有多线程竞争的情况下尽量减少不必要的轻量级锁执行路径。因为轻量级锁的加锁解锁操作是需要依赖多次CAS原子指令的,而偏向锁只需要在置换ThreadID的时候依赖一次CAS原子指令(由于一旦出现多线程竞争的情况就必须撤销偏向锁,所以偏向锁的撤销操作的性能损耗也必须小于节省下来的CAS原子指令的性能消耗)。

偏向锁的获取

当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程进入和退出同步块时不需要花费CAS操作来争夺锁资源,只需要检查是否为偏向锁、锁标识为以及ThreadID即可,处理流程如下:

  1. 检测Mark Word是否为可偏向状态,即是否为偏向锁1,锁标识位为01;
  2. 若为可偏向状态,则测试线程ID是否为当前线程ID,如果是,则执行步骤(5),否则执行步骤(3);
  3. 如果测试线程ID不为当前线程ID,则通过CAS操作竞争锁,竞争成功,则将Mark Word的线程ID替换为当前线程ID,否则执行线程(4);
  4. 通过CAS竞争锁失败,证明当前存在多线程竞争情况,当到达全局安全点,获得偏向锁的线程被挂起,偏向锁升级为轻量级锁,然后被阻塞在安全点的线程继续往下执行同步代码块;
  5. 执行同步代码块;
偏向锁的撤销

偏向锁的释放采用了 一种只有竞争才会释放锁的机制,线程是不会主动去释放偏向锁,需要等待其他线程来竞争。偏向锁的撤销需要 等待全局安全点(这个时间点是上没有正在执行的代码)。其步骤如下:

  1. 暂停拥有偏向锁的线程;
  2. 判断锁对象是否还处于被锁定状态
    否,则恢复到无锁状态(01),以允许其余线程竞争。
    是,则挂起持有锁的当前线程,并将指向当前线程的锁记录地址的指针放入对象头Mark Word,升级为轻量级锁状态(00),然后恢复持有锁的当前线程,进入轻量级锁的竞争模式;

轻量级锁

对于轻量级锁,其性能提升的依据是 “对于绝大部分的锁,在整个生命周期内都是不会存在竞争的”,如果打破这个依据则除了互斥的开销外,还有额外的CAS操作,因此在有多线程竞争的情况下,轻量级锁比重量级锁更慢。

轻量级锁的获取

引入轻量级锁的主要目的是 在没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。当关闭偏向锁功能或者多个线程竞争偏向锁导致偏向锁升级为轻量级锁,则会尝试获取轻量级锁,其步骤如下:

  1. 在线程进入同步块时,如果同步对象锁状态为无锁状态(锁标志位为“01”状态,是否为偏向锁为“0”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝,官方称之为 Displaced Mark Word。此时线程堆栈与对象头的状态如下图所示:
  2. 拷贝对象头中的Mark Word复制到锁记录(Lock Record)中;
  3. 拷贝成功后,虚拟机将使用CAS操作尝试将对象Mark Word中的Lock Word更新为指向当前线程Lock Record的指针,并将Lock record里的owner指针指向object mark word。如果更新成功,则执行步骤(4),否则执行步骤(5);
  4. 如果这个更新动作成功了,那么当前线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,即表示此对象处于轻量级锁定状态,此时线程堆栈与对象头的状态如下图所示:
  5. 如果这个更新操作失败了,虚拟机首先会检查对象Mark Word中的Lock Word是否指向当前线程的栈帧,如果是,就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行。否则说明多个线程竞争锁,进入自旋执行(3),若自旋结束时仍未获得锁,轻量级锁就要膨胀为重量级锁,锁标志的状态值变为“10”,Mark Word中存储的就是指向重量级锁(互斥量)的指针,当前线程以及后面等待锁的线程也要进入阻塞状态。
轻量级锁的释放

轻量级锁的释放也是通过CAS操作来进行的,主要步骤如下:

  1. 通过CAS操作尝试把线程中复制的Displaced Mark Word对象替换当前的Mark Word;
  2. 如果替换成功,整个同步过程就完成了,恢复到无锁状态(01);
  3. 如果替换失败,说明有其他线程尝试过获取该锁(此时锁已膨胀),那就要在释放锁的同时,唤醒被挂起的线程;

重量级锁

Synchronized是通过对象内部的一个叫做 监视器锁(Monitor)来实现的。但是监视器锁本质又是依赖于底层的操作系统的Mutex Lock来实现的。而操作系统实现线程之间的切换这就需要从用户态转换到核心态,这个成本非常高,状态之间的转换需要相对比较长的时间,这就是为什么Synchronized效率低的原因。因此,这种依赖于操作系统Mutex Lock所实现的锁我们称之为 “重量级锁”。

锁升级

锁膨胀方向: 无锁 → 偏向锁 → 轻量级锁 → 重量级锁 (此过程是不可逆的)

锁的升级是单向的,也就是说只能从低到高升级,不会出现锁的降级。
在 JDK 1.6 中默认是开启偏向锁和轻量级锁的,可以通过-XX:-UseBiasedLocking来禁用偏向锁。

自旋锁在JDK 1.4.2中引入,默认关闭,但是可以使用-XX:+UseSpinning开开启,在JDK1.6中默认开启。同时自旋的默认次数为10次,可以通过参数-XX:PreBlockSpin来调整。
JDK1.6引入自适应的自旋锁,让虚拟机会变得越来越聪明

锁消除

在有些情况下,JVM检测到不可能存在共享数据竞争,这是JVM会对这些同步锁进行锁消除。
在运行这段代码时,JVM可以明显检测到变量vector没有逃逸出方法vectorTest()之外,所以JVM可以大胆地将vector内部的加锁操作消除。

public void vectorTest(){
    Vector vector = new Vector();
    for(int i = 0 ; i < 10 ; i++){
        vector.add(i + "");
    }

    System.out.println(vector);
}
复制代码

锁粗化

  • 原则上,我们都知道在加同步锁时,尽可能的将同步块的作用范围限制到尽量小的范围(只在共享数据的实际作用域中才进行同步,这样是为了使得需要同步的操作数量尽可能变小。在存在锁同步竞争中,也可以使得等待锁的线程尽早的拿到锁)。
  • 大部分上述情况是完美正确的,但是如果存在连串的一系列操作都对同一个对象反复加锁和解锁,甚至加锁操作时出现在循环体中的,那即使没有线程竞争,频繁地进行互斥同步操作也会导致不必要地性能操作。
public static String test04(String s1, String s2, String s3) {
    StringBuilder sb = new StringBuilder();
    sb.append(s1);
    sb.append(s2);
    sb.append(s3);
    return sb.toString();
}
复制代码

在上述地连续append()操作中就属于这类情况。JVM会检测到这样一连串地操作都是对同一个对象加锁,那么JVM会将加锁同步地范围扩展(粗化)到整个一系列操作的 外部,使整个一连串地append()操作只需要加锁一次就可以了。

3.3 wait/notify

wait/notify 获得synchronize锁之后,调用wait会让当前线程进入等待队列并且释放锁 获得synchronize锁之后,调用notify会通知其他线程可以竞争synchronize锁,但并不会释放锁,需要等到monitorexit之后才会释放锁

Thread.sleep()和Object.wait()的区别

  • Thread.sleep()不会释放占有的锁,Object.wait()会释放占有的锁;
  • Thread.sleep()必须传入时间,Object.wait()可传可不传,不传表示一直阻塞下去;
  • Thread.sleep()到时间了会自动唤醒,然后继续执行;
  • Object.wait()不带时间的,需要另一个线程使用Object.notify()唤醒;
  • Object.wait()带时间的,假如没有被notify,到时间了会自动唤醒,这时又分好两种情况,一是立即获取到了锁,线程自然会继续执行;二是没有立即获取锁,线程进入同步队列等待获取锁;

其实,他们俩最大的区别就是Thread.sleep()不会释放锁资源,Object.wait()会释放锁资源。

3.4 Unsafe

cas

Unsafe只提供了3种CAS方法:compareAndSwapObject、compareAndSwapInt和compareAndSwapLong。都是native方法。

public final native boolean compareAndSwapObject(Object paramObject1, long paramLong, Object paramObject2, Object paramObject3);

public final native boolean compareAndSwapInt(Object paramObject, long paramLong, int paramInt1, int paramInt2);

public final native boolean compareAndSwapLong(Object paramObject, long paramLong1, long paramLong2, long paramLong3);
复制代码

不妨再看看Unsafe的compareAndSwap方法来实现CAS操作,它是一个本地方法,实现位于unsafe.cpp中。

UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))
  UnsafeWrapper("Unsafe_CompareAndSwapInt");
  oop p = JNIHandles::resolve(obj);
  jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
  return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END
复制代码

可以看到它通过 Atomic::cmpxchg 来实现比较和替换操作。其中参数x是即将更新的值,参数e是原内存的值。

如果是Linux的x86,Atomic::cmpxchg方法的实现如下:

inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
  int mp = os::is_MP();
  __asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)"
                    : "=a" (exchange_value)
                    : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp)
                    : "cc", "memory");
  return exchange_value;
}
复制代码

park/unpark

park/unpark能够精准的对线程进行唤醒和等待。
linux上的实现是通过POSIX的线程API的等待、唤醒、互斥、条件来进行实现的
park在执行过程中首选看是否有许可,有许可就立马返回,而每次unpark都会给许可设置成有,这意味着,可以先执行unpark,给予许可,再执行park立马自行,适用于producer快,而consumer还未完成的场景

 public native void unpark(Object var1);
    public native void park(boolean var1, long var2);
复制代码

parker实现如下

void Parker::park(bool isAbsolute, jlong time) {
  if (_counter > 0) {
       //已经有许可了,用掉当前许可
      _counter = 0 ;
     //使用内存屏障,确保 _counter赋值为0(写入操作)能够被内存屏障之后的读操作获取内存屏障事前的结果,也就是能够正确的读到0
      OrderAccess::fence();
     //立即返回
      return ;
  }

  Thread* thread = Thread::current();
  assert(thread->is_Java_thread(), "Must be JavaThread");
  JavaThread *jt = (JavaThread *)thread;

 if (Thread::is_interrupted(thread, false)) {
 // 线程执行了中断,返回
    return;
  }

  if (time < 0 || (isAbsolute && time == 0) ) { 
    //时间到了,或者是代表绝对时间,同时绝对时间是0(此时也是时间到了),直接返回,java中的parkUtil传的就是绝对时间,其它都不是
   return;
  }
  if (time > 0) {
  //传入了时间参数,将其存入absTime,并解析成absTime->tv_sec(秒)和absTime->tv_nsec(纳秒)存储起来,存的是绝对时间
    unpackTime(&absTime, isAbsolute, time);
  }

 //进入safepoint region,更改线程为阻塞状态
  ThreadBlockInVM tbivm(jt);

 if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  //如果线程被中断,或者是在尝试给互斥变量加锁的过程中,加锁失败,比如被其它线程锁住了,直接返回
    return;
  }
//这里表示线程互斥变量锁成功了
  int status ;
  if (_counter > 0)  {
    // 有许可了,返回
    _counter = 0;
    //对互斥变量解锁
    status = pthread_mutex_unlock(_mutex);
    assert (status == 0, "invariant") ;
    OrderAccess::fence();
    return;
  }
复制代码

当unpark时,则简单多了,直接设置_counter为1,再unlock mutex返回。如果_counter之前的值是0,则还要调用pthread_cond_signal唤醒在park中等待的线程:

void Parker::unpark() {
  int s, status ;
 //给互斥量加锁,如果互斥量已经上锁,则阻塞到互斥量被解锁
//park进入wait时,_mutex会被释放
  status = pthread_mutex_lock(_mutex);
  assert (status == 0, "invariant") ; 
  //存储旧的_counter
  s = _counter; 
//许可改为1,每次调用都设置成发放许可
  _counter = 1;
  if (s < 1) {
     //之前没有许可
     if (WorkAroundNPTLTimedWaitHang) {
      //默认执行 ,释放信号,表明条件已经满足,将唤醒等待的线程
        status = pthread_cond_signal (_cond) ;
        assert (status == 0, "invariant") ;
        //释放锁
        status = pthread_mutex_unlock(_mutex);
        assert (status == 0, "invariant") ;
     } else {
        status = pthread_mutex_unlock(_mutex);
        assert (status == 0, "invariant") ;
        status = pthread_cond_signal (_cond) ;
        assert (status == 0, "invariant") ;
     }
  } else {
   //一直有许可,释放掉自己加的锁,有许可park本身就返回了
    pthread_mutex_unlock(_mutex);
    assert (status == 0, "invariant") ;
  }
}
复制代码
  1. 锁优化

=======

4.1 减少锁的时间

不需要同步执行的代码,能不放在同步快里面执行就不要放在同步快内,可以让锁尽快释放;

4.2 减少锁的粒度

它的思想是将物理上的一个锁,拆成逻辑上的多个锁,增加并行度,从而降低锁竞争。它的思想也是用空间来换时间; 拆锁的粒度不能无限拆,最多可以将一个锁拆为当前cup数量个锁即可

ConcurrentHashMap

java中的ConcurrentHashMap在jdk1.8之前的版本,使用一个Segment 数组 Segment< K,V >[] segments Segment继承自ReenTrantLock,所以每个Segment就是个可重入锁,每个Segment 有一个HashEntry< K,V >数组用来存放数据,put操作时,先确定往哪个Segment放数据,只需要锁定这个Segment,执行put,其它的Segment不会被锁定;所以数组中有多少个Segment就允许同一时刻多少个线程存放数据,这样增加了并发能力。

LinkedBlockingQueue

LinkedBlockingQueue也体现了这样的思想,在队列头入队,在队列尾出队,入队和出队使用不同的锁,相对于LinkedBlockingArray只有一个锁效率要高;

4.3 使用读写锁

ReentrantReadWriteLock 是一个读写锁,读操作加读锁,可以并发读,写操作使用写锁,只能单线程写;

4.4 读写分离

CopyOnWriteArrayList 、CopyOnWriteArraySet

  • CopyOnWrite容器即写时复制的容器。通俗的理解是当我们往一个容器添加元素的时候,不直接往当前容器添加,而是先将当前容器进行Copy,复制出一个新的容器,然后新的容器里添加元素,添加完元素之后,再将原容器的引用指向新的容器。这样做的好处是我们可以对CopyOnWrite容器进行并发的读,而不需要加锁,因为当前容器不会添加任何元素。所以CopyOnWrite容器也是一种读写分离的思想,读和写不同的容器。
  • CopyOnWrite并发容器用于读多写少的并发场景,因为,读的时候没有锁,但是对其进行更改的时候是会加锁的,否则会导致多个线程同时复制出多个副本,各自修改各自的;

4.5 cas

如果需要同步的操作执行速度非常快,并且线程竞争并不激烈,这时候使用cas效率会更高,因为加锁会导致线程的上下文切换,如果上下文切换的耗时比同步操作本身更耗时,且线程对资源的竞争不激烈,使用volatiled+cas操作会是非常高效的选择;

  1. 代码示例

========

github.com/ns7381/java…

参考: 《2020最新Java基础精讲视频教程和学习路线!》

链接:https://juejin.cn/post/693620...

你可能感兴趣的:(java-并发原理)