NLP【05】pytorch实现glove词向量(附代码详解)

上一篇:NLP【04】tensorflow 实现Wordvec(附代码详解)

下一篇:NLP【06】RCNN原理及文本分类实战(附代码详解)

完整代码下载:https://github.com/ttjjlw/NLP/tree/main/Word_vector%E8%AF%8D%E5%90%91%E9%87%8F/glove

一、前言

glove词向量的原理,请参考我的第三篇文章

二、代码结构

pytorch

data 数据

dataset.py 把raw_data处理成train_corpus的格式

huffman.py 构建哈夫曼树

glove.py  glove模型

tools.py 构建共现矩阵,可视化以及计算词与词相似性等功能

main.py 程序运行入口,直接运行main.py即可得到glove词向量

三、代码详解

def train(args):
    corpus_preprocessor = CorpusPreprocess(args.train_data_path, args.min_count)
    coo_matrix = corpus_preprocessor.get_cooccurrence_matrix(args.windows_size)
    vocab = corpus_preprocessor.get_vocab()
    glove = Glove(vocab, args)

    print(glove)
    if os.path.isfile(args.embed_path_pkl):
        glove.load_state_dict(torch.load(args.embed_path_pkl))
        print('载入模型{}'.format(args.embed_path_pkl))
    if use_gpu:
        glove.cuda()
    optimizer = torch.optim.Adam(glove.parameters(), lr=args.learning_rate)

    train_data = TrainData(coo_matrix,args)
    data_loader = DataLoader(train_data,
                             batch_size=args.batch_size,
                             shuffle=True,
                             num_workers=2,
                             pin_memory=True)

    steps = 0
    for epoch in range(args.epoches):
        print(f"currently epoch is {epoch + 1}, all epoch is {args.epoches}")
        avg_epoch_loss = 0
        for i, batch_data in enumerate(data_loader):
            c = batch_data['c']
            s = batch_data['s']
            X_c_s = batch_data['X_c_s']
            W_c_s = batch_data["W_c_s"]

            if use_gpu:
                c = c.cuda()
                s = s.cuda()
                X_c_s = X_c_s.cuda()
                W_c_s = W_c_s.cuda()

            W_c_s_hat = glove(c, s)
            loss = loss_func(W_c_s_hat, X_c_s, W_c_s)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            avg_epoch_loss += loss / len(train_data)
            if steps % 1000 == 0:
                print(f"Steps {steps}, loss is {loss.item()}")
            steps += 1
        print(f"Epoches {epoch + 1}, complete!, avg loss {avg_epoch_loss}.\n")
    save_word_vector(args.embed_path_txt, corpus_preprocessor, glove)
    torch.save(glove.state_dict(), args.embed_path_pkl)

这里摘抄了核心部分代码:

主要包含两部:

1、构建共现矩阵

corpus_preprocessor = CorpusPreprocess(args.train_data_path, args.min_count) 

coo_matrix = corpus_preprocessor.get_cooccurrence_matrix(args.windows_size)

2、输入到模型进行训练

W_c_s_hat = glove(c, s)

四、运行的结果

处理第1个原始语料文件
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\USER\AppData\Local\Temp\jieba.cache
Loading model cost 1.110 seconds.
Prefix dict has been built successfully.
Glove(
  (c_weight): Embedding(50216, 128)
  (c_biase): Embedding(50216, 1)
  (s_weight): Embedding(50216, 128)
  (s_biase): Embedding(50216, 1)
)
currently epoch is 1, all epoch is 3
Steps 0, loss is 65.82528686523438
Steps 1000, loss is 30.690044403076172

 

你可能感兴趣的:(【NLP】遇见电商❤️,glove,pytorch)