Linux Centos7 环境基于Docker部署Zookeeper服务搭建实战

配置Zookeeper安装目录

在宿主机配置zookeeper安装目录:/docker/develop/zookeeper
并且在文件夹创建 data 和logs 目录:
mkdir -p /docker/develop/zookeeper/data
mkdir -p /docker/develop/zookeeper/logs

[root@centos-knight ~]# cd /docker/develop/zookeeper
[root@centos-knight zookeeper]# mkdir -p /docker/develop/zookeeper/data
[root@centos-knight zookeeper]# mkdir -p /docker/develop/zookeeper/logs

授权文件目录:chmod -R 777 /docker/develop/zookeeper/

[root@centos-knight zookeeper]# chmod -R 777 /docker/develop/zookeeper/ 
[root@centos-knight zookeeper]# 

安装和部署Zookeeper

拉取zookeeper镜像:docker pull zookeeper

[root@centos-knight zookeeper]# docker pull zookeeper
Using default tag: latest
latest: Pulling from library/zookeeper
Digest: sha256:6b6b5f7fb6a47d2b311df5af1718af5a425a679dbb844d77913fa68d1a8bf0fd
Status: Image is up to date for zookeeper:latest
docker.io/library/zookeeper:latest
[root@centos-knight zookeeper]# 

临时安装Zookeeper服务:zookeeper-tmp-server

docker run -itd -p 2181:2181 --restart always --name=zookeeper-tmp-server  --privileged=true \
-v /docker/develop/zookeeper/data:/data \
-v /docker/develop/zookeeper/datalog:/datalog \
-v /docker/develop/zookeeper/logs:/logs \
-e "ZOO_STANDALONE_ENABLED=true" \
-e "TZ=Asia/Shanghai" \
-e "ZOO_4LW_COMMANDS_WHITELIST=*" \
-e "ZOO_AUTOPURGE_SNAPRETAINCOUNT=5" \
-e "ZOO_AUTOPURGE_PURGEINTERVAL=24" \
-e "ZOO_MAX_CLIENT_CNXNS=64" \
-e "ZOO_TICK_TIME=2000" \
-e "ZOO_INIT_LIMIT=100" \
-e "ZOO_SYNC_LIMIT=5" \
zookeeper:latest

复制zookeeper-tmp-server的conf到/docker/develop/zookeeper:

[root@centos-knight ~]# docker ps
CONTAINER ID  IMAGE   COMMAND   CREATED             STATUS   PORTS   NAMES
12947bdadd84  zookeeper:latest "/docker-entrypoint.…"   36 hours ago  Up 36 hours  2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 8080/tcp   zookeeper-develop-server
[root@centos-knight ~]# docker cp 12947bdadd84:/conf /docker/develop/zookeeper/

编写zookeeper的zoo.cfg配置文件:

tickTime=2000
initLimit=100
syncLimit=5
dataDir=/data
dataLogDir=/datalog
clientPort=2181
quorumListenOnAllIPs=true
preAllocSize=64M
globalOutstandingLimit=100000
snapCount=50000
maxClientCnxns=64
minSessionTimeout=4000
maxSessionTimeout=40000
4lw.commands.whitelist=*
standaloneEnabled=true
admin.enableServer=true
server.1=0.0.0.0:2888:3888
tcpKeepAlive=true
ipReachableTimeout=0
cnxTimeout=3
electionAlg=3
autopurge.snapRetainCount=5
autopurge.purgeInterval=24
#忽略ACL验证
skipACL=yes
forceSync=yes
fsync.warningthresholdms=50

编写正式安装Dcoekr命令:

docker run -itd -p 2181:2181 -p 2888:2888 -p 3888:3888 --restart always --name=zookeeper-develop-server  --privileged=true \
-v /docker/develop/zookeeper/conf/zoo.cfg:/conf/zoo.cfg \
-v /docker/develop/zookeeper/data:/data \
-v /docker/develop/zookeeper/logs:/datalog \
-e "TZ=Asia/Shanghai" \
-e "JAVA_OPTS=-server -Xms512m -Xmx512m -Xmn256m -Duser.home=/opt -XX:MetaspaceSize=128m -XX:MaxMetaspaceSize=320m -XX:+AlwaysPreTouch -XX:-UseBiasedLocking" \
zookeeper:latest

部署Dubbo客户端

部署安装dubbo-admin:

docker run -itd --restart always --privileged=true  --name dubbo-devleop-ops -p 8083:8080  -e admin.registry.address="zookeeper://IP:2181" -e admin.config-center="zookeeper://IP:2181" -e admin.metadata-report.address="zookeeper://IP:2181" -e "JAVA_OPTS=-server -Xms512m -Xmx512m -Xmn256m -Duser.home=/opt -XX:MetaspaceSize=128m -XX:MaxMetaspaceSize=320m -XX:+AlwaysPreTouch -XX:-UseBiasedLocking" -e TZ="Asia/Shanghai" apache/dubbo-admin:latest

基于Springboot整合和使用Dubbo+Zookeeper

创建工程:pivotal-cloud-dependencies [统一管理工程版本依赖资源]
Linux Centos7 环境基于Docker部署Zookeeper服务搭建实战_第1张图片
一般都是使用Maven作为构建工具,这里便只需在pom.xml中添加如下依赖即可:
标签定义依赖版本号:


2.7.3
2.7.3

3.5.6
4.2.0

标签添加如下内容:

 
    
     org.apache.dubbo
     dubbo
     ${dubbo.version}
     
      
       
          org.springframework
          spring
       
     
       
          javax.servlet
          servlet-api
       
    
       
           log4j
           log4j
       
    
        
            io.netty
            netty-all
      
     
  
  
       org.apache.dubbo
       dubbo-spring-boot-starter
       ${spring-boot-dubbo.version}
       
          
           
              org.apache.dubbo
               dubbo
          
      
 
 
     org.apache.dubbo
     dubbo-metadata-report-zookeeper
      ${dubbo.version}
      
       
         
           org.apache.dubbo
            dubbo-common
         
       
      
          org.apache.dubbo
          dubbo-remoting-zookeeper
     
     
   
 
 
            
                org.apache.zookeeper
                zookeeper
                ${zookeeper.version}
                
                    
                    
                        log4j
                        log4j
                    
                    
                    
                        org.slf4j
                        slf4j-api
                    
                    
                    
                        org.slf4j
                        slf4j-log4j12
                    
                
            
            
                org.apache.curator
                curator-framework
                ${curator.version}
                
                    
                    
                        org.apache.curator
                        curator-client
                    
                
            
            
                org.apache.curator
                curator-recipes
                ${curator.version}
                
                    
                    
                        org.apache.curator
                        curator-framework
                    
                
            
            
                org.apache.curator
                curator-client
                ${curator.version}
                
                    
                    
                        org.apache.curator
                        curator-framework
                    
                    
                    
                        org.apache.zookeeper
                        zookeeper
                    
                
            
            
ps[注意事项]:
1.使用pivotal-cloud-dependencies的意义,可以排除多余和重复依赖,解决依赖冲突等具有指导和参考的作用
2.对于升级和改造可以灵活切换,统一管理版本号等

创建工程:pivotal-dubbo-integration
Linux Centos7 环境基于Docker部署Zookeeper服务搭建实战_第2张图片

与Dubbo相关的依赖:

 
      org.apache.dubbo
      dubbo
      ${dubbo.version}
 
 
      org.apache.dubbo
      dubbo-spring-boot-starter
      ${spring-boot-dubbo.version}
  
 

与Zookeeper相关的依赖:



    org.apache.zookeeper
    zookeeper
    ${zookeeper.version}


  org.apache.curator
  curator-framework
  ${curator.version}


  org.apache.curator
  curator-recipes
  ${curator.version}


  org.apache.curator
  curator-client
  ${curator.version}

然后运行打包构建命令:mvn clean install 将工程打成一个jar,然后在工程需要使用Dubbo作为Provider和Consumer 的工程模块中依赖此内部整合工程:



 com.mark.apple
 pivotal-dubbo-integration
 version>${project.version}

ps[注意事项]:
1.使用pivotal-dubbo-integration的意义,可以自定义封装Dubbo相关特殊场景下的自定义模块[自定义Dubbo序列化等],以及Dubbo性能调优等
2.可以整合以及其他框架,譬如[Dubbo网关以及Dubbo指标监控等]

最后在Provider和Consumer的工程配置相关属性:

Provider 相关属性配置:
#####################################################
#########Springboot Dubbo Provider Setting##########
#####################################################
pivotal.zookeeper.server-address=zookeeper://IP:2181
dubbo.metadata-report.address=${pivotal.zookeeper.server-address}
dubbo.application.id=${spring.application.name}-${spring.profiles.active}
dubbo.application.name=${spring.application.name}-${spring.profiles.active}
dubbo.application.registry=${spring.application.name}-${spring.profiles.active}
dubbo.application.organization=com.mark.apple
dubbo.application.architecture=${dubbo.application.name}
dubbo.application.environment=${spring.profiles.active}
dubbo.application.logger=slf4j
dubbo.config.override=true
dubbo.config.multiple=true
#dubbo file upload length
# ProtocolConfig Bean
dubbo.protocol.id=dubbo
dubbo.protocol.name=dubbo
#dubbo.protocol.status=client
dubbo.protocol.payload=2147483647
dubbo.protocol.buffer=8192
dubbo.protocol.register=true
dubbo.protocol.server=netty
dubbo.protocol.transporter=netty
dubbo.protocol.threadpool=cached
dubbo.protocol.threads=200
dubbo.protocol.iothreads=2
dubbo.protocol.dispatcher=all
#RegistryConfig Bean
dubbo.registry.address=${pivotal.zookeeper.server-address}
# ProtocolConfig Bean
dubbo.protocol.id=dubbo
dubbo.protocol.name=dubbo
dubbo.protocol.port=28080
dubbo.protocol.status=server
dubbo.protocol.payload=2147483647
dubbo.protocol.buffer=8192
dubbo.protocol.register=true
dubbo.protocol.server=netty
dubbo.protocol.transporter=netty
dubbo.protocol.threadpool=cached
dubbo.protocol.threads=200
dubbo.protocol.dispatcher=all
dubbo.protocol.accepts=1000
#Dubbo Provider setting
dubbo.provider.accepts=0
dubbo.protocol.iothreads=2
dubbo.provider.threads=200
dubbo.provider.threadpool=cached
dubbo.provider.executes=0
dubbo.provider.validation=true
dubbo.provider.connections=0
dubbo.provider.actives=0
dubbo.provider.buffer=8192
dubbo.provider.retries=3
dubbo.provider.delay=-1
dubbo.provider.timeout=360000
#Dubbo Consumer setting
dubbo.consumer.lazy=true
dubbo.consumer.connections=0
dubbo.consumer.actives=0
dubbo.consumer.retries=3
dubbo.consumer.timeout=360000
dubbo.consumer.validation=true
dubbo.consumer.check=true
dubbo.consumer.loadbalance=consistenthash
#Base packages to scan Dubbo Components (e.g @Service , @Reference)
dubbo.scan.base-packages=com.pivotal.authority.server.impl
Consumer相关属性配置:
#####################################################
#########Springboot Dubbo Consumer Setting##########
#####################################################
pivotal.zookeeper.server-address=zookeeper://IP:2181
dubbo.metadata-report.address=${pivotal.zookeeper.server-address}
# Dubbo Config properties
dubbo.application.id=${spring.application.name}-${spring.profiles.active}
dubbo.application.name=${spring.application.name}-${spring.profiles.active}
dubbo.application.registry=${spring.application.name}-${spring.profiles.active}
dubbo.application.organization=com.mark.apple
dubbo.application.architecture=${dubbo.application.name}
dubbo.application.environment=${spring.profiles.active}
dubbo.application.logger=slf4j
dubbo.config.override=true
dubbo.config.multiple=true
# ProtocolConfig Bean
dubbo.protocol.id=dubbo
dubbo.protocol.name=dubbo
dubbo.protocol.status=client
dubbo.protocol.payload=2147483647
dubbo.protocol.buffer=8192
dubbo.protocol.register=true
dubbo.protocol.server=netty
dubbo.protocol.transporter=netty
dubbo.protocol.threadpool=cached
dubbo.protocol.threads=200
dubbo.protocol.iothreads=2
dubbo.protocol.dispatcher=all
#RegistryConfig Bean
dubbo.registry.id=${dubbo.application.name}
dubbo.registry.protocol=dubbo
dubbo.registry.check=true
dubbo.registry.address=${pivotal.zookeeper.server-address}
#Dubbo Consumer setting
dubbo.consumer.lazy=true
dubbo.consumer.connections=0
dubbo.consumer.actives=0
dubbo.consumer.retries=3
dubbo.consumer.validation=true
dubbo.consumer.check=true
dubbo.consumer.loadbalance=consistenthash

版权声明:本文为博主原创文章,遵循相关版权协议,如若转载或者分享请附上原文出处链接和链接来源。

你可能感兴趣的:(java)