YOLOv5系列(3)——YOLOv5修改网络结构

文章目录

  • 一、设置网络结构为mobilenet-V2
  • 二、添加注意力模块

一、设置网络结构为mobilenet-V2

首先,需要在models/common.py里,实现MobileNetv2的 bottleneck 和 Pwconv。
1、Mobilenetv2的bottleneck: InvertedResidual

#mobilenet  Bottleneck  InvertedResidual  
class BottleneckMOB(nn.Module):  
    #c1:inp  c2:oup s:stride  expand_ratio:t  
    def __init__(self, c1, c2, s, expand_ratio):  
        super(BottleneckMOB, self).__init__()  
        self.s = s  
        hidden_dim = round(c1 * expand_ratio)  
        self.use_res_connect = self.s == 1 and c1 == c2  
        if expand_ratio == 1:  
            self.conv = nn.Sequential(  
                # dw  
                nn.Conv2d(hidden_dim, hidden_dim, 3, s, 1, groups=hidden_dim, bias=False),  
                nn.BatchNorm2d(hidden_dim),  
                nn.ReLU6(inplace=True),  
                # pw-linear  
                nn.Conv2d(hidden_dim, c2, 1, 1, 0, bias=False),  
                nn.BatchNorm2d(c2),  
            )  
        else:  
            self.conv = nn.Sequential(  
                # pw  
                nn.Conv2d(c1, hidden_dim, 1, 1, 0, bias=False),  
                nn.BatchNorm2d(hidden_dim),  
                nn.ReLU6(inplace=True),  
                # dw  
                nn.Conv2d(hidden_dim, hidden_dim, 3, s, 1, groups=hidden_dim, bias=False),  
                nn.BatchNorm2d(hidden_dim),  
                nn.ReLU6(inplace=True),  
                # pw-linear  
                nn.Conv2d(hidden_dim, c2, 1, 1, 0, bias=False),  
                nn.BatchNorm2d(c2),  
            )def forward(self, x):  
        if self.use_res_connect:  
            return x + self.conv(x)  
        else:  
            return self.conv(x)  

2、Pointwise Convolution

class PW_Conv(nn.Module):  
    def __init__(self, c1, c2):  # ch_in, ch_out  
        super(PW_Conv, self).__init__()  
        self.conv = nn.Conv2d(c1, c2, 1, 1, 0, bias=False)  
        self.bn = nn.BatchNorm2d(c2)  
        self.act = nn.ReLU6(inplace=True)def forward(self, x):  
        return self.act(self.bn(self.conv(x)))  

接着需要在yolov5的读取模型配置文件的代码(models/yolo.py的parse_model函数)进行修改,使得能够调用到上面的模块,只需修改下面这部分代码:

n = max(round(n * gd), 1) if n > 1 else n  # depth gain  
if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, PW_Conv, BottleneckMOB]:  
    c1, c2 = ch[f], args[0]  

并且需要在import引用处加入PW_Conv,BottleneckMOB这两个模块:

from models.common import Conv, Bottleneck,SPP, DWConv, Focus, BottleneckCSP, Concat, NMS, autoShape, PW_Conv,BottleneckMOB

然后就是搭建我们的模型配置文件,我在yolov5s.yaml的基础上进行修改,将yolov5s的backbone替换成mobilenetv2,重新建立了一个模型配置文件yolov5-mobilenetV2.yaml:

# parameters  
nc: 1  # number of classes  
depth_multiple: 0.33  # model depth multiple  
width_multiple: 0.50  # layer channel multiple  # anchors  
anchors:  
  - [116,90, 156,198, 373,326]  # P5/32  
  - [30,61, 62,45, 59,119]  # P4/16  
  - [10,13, 16,30, 33,23]  # P3/8  # YOLOv5 backbone: mobilenet v2  
backbone:  
  # [from, number, module, args]  
  [[-1, 1, nn.Conv2d, [32, 3, 2]],  # 0-P1/2   oup, k, s     640  
   [-1, 1, BottleneckMOB, [16, 1, 1]],  # 1-P2/4   oup, s, t 320  
   [-1, 2, BottleneckMOB, [24, 2, 6]],  #                    320  
   [-1, 1, PW_Conv, [256]],  #4  output p3                   160  
   [-1, 3, BottleneckMOB, [32, 2, 6]],  # 3-P3/8             160  
   [-1, 4, BottleneckMOB, [64, 1, 6]],  # 5                  80  
   [-1, 1, PW_Conv, [512]],  #7 output p4  6                 40  
   [-1, 3, BottleneckMOB, [96, 2, 6]],  # 7                  80  
   [-1, 3, BottleneckMOB, [160, 1, 6,]], #                   40  
   [-1, 1, BottleneckMOB, [320, 1, 6,]], #                   40  
   [-1, 1, nn.Conv2d, [1280, 1, 1]],     #                   40  
   [-1, 1, SPP, [1024, [5, 9, 13]]],  #11     #              40  
  ]# YOLOv5 head  
head:  
  [[-1, 3, BottleneckCSP, [1024, False]],  # 12             40  [-1, 1, Conv, [512, 1, 1]],                      #       40  
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],      #       40  
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4-7  #       80  
   [-1, 3, BottleneckCSP, [512, False]],  # 16      #       80  [-1, 1, Conv, [256, 1, 1]],                      #       80  
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],      #       160  
   [[-1, 3], 1, Concat, [1]],  # cat backbone P3-4          160  
   [-1, 3, BottleneckCSP, [256, False]],            #       160  
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],  # 21 (P3/8-small)   #        160  [-2, 1, Conv, [256, 3, 2]],                     #       160  
   [[-1, 17], 1, Concat, [1]],  # cat head P4      #       160  
   [-1, 3, BottleneckCSP, [512, False]],           #       160  
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],  # 25 (P4/16-medium)  #       160  [-2, 1, Conv, [512, 3, 2]],                     #       160  
   [[-1, 13], 1, Concat, [1]],  # cat head P5-13   #      160  
   [-1, 3, BottleneckCSP, [1024, False]],          #      160  
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],  # 29 (P5/32-large)           160  [[21, 25, 29], 1, Detect, [nc, anchors]],  # Detect(P5, P4, P3)     nc:number class, na:number of anchors  
  ]  

到这我们就实现了将yolov5的backbone替换成了mobilenetv2。在使用时只需要将网络结构配置参数—cfg修改成 –cfg yolov5-mobilenet.yaml。
训练指令:

python train.py --data coco.yaml --cfg yolov5-mobilenet.yaml--weights '' --batch-size 64

二、添加注意力模块

配置文件yolov5x_se.yaml

# parameters
nc: 15 # number of classes
depth_multiple: 1 # model depth multiple
width_multiple: 1 # layer channel multiple

# anchors
anchors:
  - [10, 13, 16, 30, 33, 23] # P3/8
  - [30, 61, 62, 45, 59, 119] # P4/16
  - [116, 90, 156, 198, 373, 326] # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [
    [-1, 1, Focus, [64, 3]], # 0-P1/2                 #1
    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4              #2
    [-1, 3, C3, [128]], #3
    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8              #4
    [-1, 9, C3, [256]], #5
    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16             #6
    [-1, 9, C3, [512]], #7
    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32            #8
    [-1, 1, SPP, [1024, [5, 9, 13]]], #9
    [-1, 3, C3, [1024, False]], # 9                   #10
    [-1, 1, SELayer, [1024, 4]], #10
  ]



# YOLOv5 head
head: [
    [-1, 1, Conv, [512, 1, 1]], #11 /32
    [-1, 1, nn.Upsample, [None, 2, "nearest"]], #12 /16
    [[-1, 6], 1, Concat, [1]], # cat backbone P4 /16       #13
    [-1, 3, C3, [512, False]], # 13 / 16                  #14

    [-1, 1, Conv, [256, 1, 1]], #15 /16 
    [-1, 1, nn.Upsample, [None, 2, "nearest"]], #16 /8
    [[-1, 4], 1, Concat, [1]], # cat backbone P3  /8    #17
    [-1, 3, C3, [256, False]], # 17 (P3/8-small) /8    #18

    [-1, 1, Conv, [256, 3, 2]], #19 /16
    [[-1, 6], 1, Concat, [1]], # cat head P4         #20
    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)    #21

    [-1, 1, Conv, [512, 3, 2]], #22 /32
    [[-1, 8], 1, Concat, [1]], # cat head P5         #23
    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)    #24

    [[18, 21, 24], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
  ]

在backbone最后一层添加了SELayer,这个类我已经在common.py中添加进来:

class SELayer(nn.Module):
    def __init__(self, c1, r=16):
        super(SELayer, self).__init__()
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.l1 = nn.Linear(c1, c1//r, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.l2 = nn.Linear(c1//r, c1, bias=False)
        self.sig = nn.Sigmoid()
        

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avgpool(x).view(b, c)
        y = self.l1(y)
        y = self.relu(y)
        y = self.l2(y)
        y = self.sig(y)
        y = y.view(b, c, 1, 1)
        return x * y.expand_as(x)

还需要在yolo.py中添加这个改动:

for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):
    m = eval(m) if isinstance(m, str) else m  # eval strings
    for j, a in enumerate(args):
        try:
            args[j] = eval(a) if isinstance(a, str) else a  # eval strings
        except:
            pass
    n = max(round(n * gd), 1) if n > 1 else n  # depth gain
    if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP,
                DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, 
                C3]:
        c1, c2 = ch[f], args[0]
        if c2 != no:  # if not output
            c2 = make_divisible(c2 * gw, 8)

        args = [c1, c2, *args[1:]]
        if m in [BottleneckCSP, C3]:
            args.insert(2, n)  # number of repeats
            n = 1
    elif m is nn.BatchNorm2d:
        args = [ch[f]]
    elif m is Concat:
        c2 = sum([ch[x] for x in f])
    elif m is Detect:
        args.append([ch[x] for x in f])
        if isinstance(args[1], int):  # number of anchors
            args[1] = [list(range(args[1] * 2))] * len(f)
    elif m is Contract:
        c2 = ch[f] * args[0] ** 2
    elif m is Expand:
        c2 = ch[f] // args[0] ** 2
    elif m is SELayer: # 这里是修改的部分
        channel, re = args[0], args[1]
        channel = make_divisible(channel * gw, 8) if channel != no else channel 
        args = [channel, re]
    else:
        c2 = ch[f]

你可能感兴趣的:(深度学习,AI,yolo,深度学习,pytorch,神经网络,yolov5,机器学习)