PCL中的点云配准方法:https://www.sohu.com/a/321034987_715754
点云配准资源汇总:https://mp.weixin.qq.com/s/rj090vstXl8nlI_lWndmTg
1、PCL ICP算法实现点云精配准:https://blog.csdn.net/qq_36686437/article/details/105825252
2、PCL 点到面的ICP精配准:https://blog.csdn.net/qq_36686437/article/details/109893261
3、PCL 点到面的ICP(非线性最小二乘):https://blog.csdn.net/qq_36686437/article/details/109998696
4、PCL 4PCS算法实现点云配准:https://blog.csdn.net/qq_36686437/article/details/105646373
5、PCL 3D-NDT 算法实现点云配准:https://blog.csdn.net/qq_36686437/article/details/105824202
6、PCL K4PCS算法实现点云配准:https://blog.csdn.net/qq_36686437/article/details/105782812
7、PCL 使用GICP对点云配准:https://blog.csdn.net/qq_36686437/article/details/107345969
8、PCL SAC_IA 初始配准算法:https://blog.csdn.net/qq_36686437/article/details/107304152
9、PCL 交互式迭代最近点配准:https://blog.csdn.net/qq_36686437/article/details/106950838
10、PCL RANSAC实现点云粗配准:https://blog.csdn.net/qq_36686437/article/details/108889699
11、坐标转换
1)PCL Matrix4f实现点云坐标变换:https://blog.csdn.net/qq_36686437/article/details/106769135
2)PCL Affine3f 实现点云平移旋转:https://blog.csdn.net/qq_36686437/article/details/106363380
3)奇异矩阵分解:https://blog.csdn.net/qq_36686437/article/details/107093185
12、对应关系
1)PCL: CorrespondenceEstimationNormalShooting的使用:https://blog.csdn.net/qq_36686437/article/details/106047732
2)PCL 查找对应点并可视化:https://blog.csdn.net/qq_36686437/article/details/106028371
3)PCL 提取点云重叠部分并保存:https://blog.csdn.net/qq_36686437/article/details/105886110
4)PCL 实现K近邻查找匹配点对:https://blog.csdn.net/qq_36686437/article/details/106529092
5)PCL RANSAC算法去除误匹配点对:https://blog.csdn.net/qq_36686437/article/details/107087020
6)*PCL FPFH查找对应点对SVD进行配准:https://blog.csdn.net/qq_36686437/article/details/109549082
13、PCL 中 getFitnessScore()的计算:https://blog.csdn.net/qq_36686437/article/details/106189636
14、点云配准精度评价指标——均方根误差:https://blog.csdn.net/qq_36686437/article/details/107962194
15、点云配准—计算旋转平移误差:https://blog.csdn.net/qq_36686437/article/details/108932995
pcl_filters模块api代码解析:https://mp.weixin.qq.com/s/PBcRJs2j4hK4qMlCljYIZQ
1、PCL 使用VoxelGrid对点云进行下采样:https://blog.csdn.net/qq_36686437/article/details/106628442
2、PCL 使用ApproximateVoxelGrid对点云进行下采样:https://blog.csdn.net/qq_36686437/article/details/109579041
3、PCL 统计滤波器:https://blog.csdn.net/qq_36686437/article/details/106627692
4、PCL 直通滤波(PassThrough):https://blog.csdn.net/qq_36686437/article/details/106627385
5、(1)PCL 点云添加高斯噪声并保存:https://blog.csdn.net/qq_36686437/article/details/109569238
(2)PCL 高斯滤波:https://blog.csdn.net/qq_36686437/article/details/107569087
6、PCL CropHull任意多边形内部点云提取:https://blog.csdn.net/qq_36686437/article/details/106961439
7、PCL CropBox 过滤/提取给定立方体内的点云数据:https://blog.csdn.net/qq_36686437/article/details/108896421
8、PCL 使用参数化模型投影点云:https://blog.csdn.net/qq_36686437/article/details/106951772
9、PCL 点云投影到球面:https://blog.csdn.net/qq_36686437/article/details/109580879
10、PCL 使用ConditionalRemoval和RadiusOutlierRemoval移除离群点:https://blog.csdn.net/qq_36686437/article/details/106960765
11、PCL 从一个点集中提取一个子集:https://blog.csdn.net/qq_36686437/article/details/106959266
12、上采样、均匀采样:
1)PCL 使用setUpsamplingMethod 对点云进行上采样:https://blog.csdn.net/qq_36686437/article/details/107151035
2)PCL 使用UniformSampling对点云进行均匀采样:https://blog.csdn.net/qq_36686437/article/details/107150158
3)PCL 采样固定的点云数量:https://blog.csdn.net/qq_36686437/article/details/109626962
1、PCL 无序点云的快速三角剖分:https://blog.csdn.net/qq_36686437/article/details/107384725
2、PCL 泊松曲面重建法:https://blog.csdn.net/qq_36686437/article/details/107391813
3、PCL 移动立方体算法:https://blog.csdn.net/qq_36686437/article/details/107401547
4、PCL 在平面模型上构建凹多边形:https://blog.csdn.net/qq_36686437/article/details/107404591
5、PCL 平面点云B样条曲线拟合:https://blog.csdn.net/qq_36686437/article/details/107565489
6、PCL 基于B样条曲线的曲面重建:https://blog.csdn.net/qq_36686437/article/details/107562180
PCL中Kd树理论:https://mp.weixin.qq.com/s/EvBlaymvcSaolBxTB5_ELg
1、PCL KD树的使用:https://blog.csdn.net/qq_36686437/article/details/105692994
2、PCL addLine可视化K近邻:https://blog.csdn.net/qq_36686437/article/details/106365440
3、PCL 计算点云密度以及无效值的处理:https://blog.csdn.net/qq_36686437/article/details/108758736
PCL中八叉树理论:https://mp.weixin.qq.com/s/5iZZBBYTiRz0xFnK23eenw
1、PCL 八叉树的使用:https://blog.csdn.net/qq_36686437/article/details/105922948
2、PCL 点云体素化并求体素中心:https://blog.csdn.net/qq_36686437/article/details/106275609
3、PCL 八叉树实现空间变化检测:https://blog.csdn.net/qq_36686437/article/details/106528377
PCL 点云特征描述与提取:https://mp.weixin.qq.com/s/m3tlvBYrDG8wZZr7lWTOpA
点云局部特征描述综述:https://mp.weixin.qq.com/s/9H2fiLDrg97VATk57Ou_kw
1、PCL Harris 关键点提取:https://blog.csdn.net/qq_36686437/article/details/107072992
2、PCL SIFT关键点提取:https://blog.csdn.net/qq_36686437/article/details/107067917
3、PCL ISS关键点提取:https://blog.csdn.net/qq_36686437/article/details/105806449
4、PCL 计算点云法向量并显示:https://blog.csdn.net/qq_36686437/article/details/105559280
5、移动最小二乘原理:https://blog.csdn.net/qq_36686437/article/details/106103760
PCL MLS计算法线并显示:https://blog.csdn.net/qq_36686437/article/details/106103599
6、PCL 使用积分图进行法线估计:https://blog.csdn.net/qq_36686437/article/details/107161752
7、点云的曲率及计算:https://blog.csdn.net/qq_36686437/article/details/105906584
PCL 计算点云的主曲率:https://blog.csdn.net/qq_36686437/article/details/105488457
8、PCL BoundaryEstimation进行边界提取:https://blog.csdn.net/qq_36686437/article/details/106522807
9、PCL 基于惯性矩与偏心率的描述子:https://blog.csdn.net/qq_36686437/article/details/107167018
10、PCL 估计一点云的VFH特征:https://blog.csdn.net/qq_36686437/article/details/107163266
11、PFH和FPFH的算法原理:https://blog.csdn.net/qq_36686437/article/details/105922657
PCL 计算PFH并可视化:https://blog.csdn.net/qq_36686437/article/details/105922110
PCL 计算FPFH并可视化:https://blog.csdn.net/qq_36686437/article/details/105921781
12、PCL Spin Image 旋转图像:https://blog.csdn.net/qq_36686437/article/details/107898742
13、PCL SHOT352描述子:https://blog.csdn.net/qq_36686437/article/details/108174987
三维点云分割综述【上】:https://mp.weixin.qq.com/s/BhDd5gn2lksFScKSe0NVbQ
三维点云分割综述【中】:https://mp.weixin.qq.com/s/nEFAUcZnXe07J7hv41wh3A
三维点云分割综述【下】:https://mp.weixin.qq.com/s/wjxQwD96kh7zlQ316AhRJQ
1、PCL 中实现平面模型分割:https://blog.csdn.net/qq_36686437/article/details/107078904
2、PCL RANSAC(拟合)分割多个平面:https://blog.csdn.net/qq_36686437/article/details/109606935
3、PCL 圆柱体模型分割:https://blog.csdn.net/qq_36686437/article/details/107579591
4、PCL 欧式聚类分割:https://blog.csdn.net/qq_36686437/article/details/107583476
5、PCL 区域生长分割:https://blog.csdn.net/qq_36686437/article/details/107584523
6、PCL 基于颜色的区域生长分割:https://blog.csdn.net/qq_36686437/article/details/107584955
7、PCL 最小图割分割:https://blog.csdn.net/qq_36686437/article/details/107590028
8、PCL 基于法线微分(DoN)的分割:https://blog.csdn.net/qq_36686437/article/details/107614494
9、PCL 基于超体素的点云分割:https://blog.csdn.net/qq_36686437/article/details/107619805
10、PCL 渐进式形态学滤波地面分割:https://blog.csdn.net/qq_36686437/article/details/107622650
1、PCL common 常见基础功能函数:https://blog.csdn.net/qq_36686437/article/details/107807735
2、PCL 两个点云中的数据或字段连接:https://blog.csdn.net/qq_36686437/article/details/108673165
4、PCL 常用小知识:https://blog.csdn.net/qq_36686437/article/details/106217577
5、PCL 点云格式转换:https://blog.csdn.net/qq_36686437/article/details/108759360
6、PCL 计算点云质心:https://blog.csdn.net/qq_36686437/article/details/109781979
7、PCL 计算点云轴向最值:https://blog.csdn.net/qq_36686437/article/details/109787737
1、RANSAC拟合直线:https://blog.csdn.net/qq_36686437/article/details/108522827
2、RANSAC拟合平面:https://blog.csdn.net/qq_36686437/article/details/106928207
3、RANSAC拟合圆柱:https://blog.csdn.net/qq_36686437/article/details/107579591
4、PCL RANSAC 分割指定阈值内的平面:https://blog.csdn.net/qq_36686437/article/details/110846002
可视化:https://blog.csdn.net/weixin_38408805/article/details/84029427
可视化:https://segmentfault.com/a/1190000006685118
1、PCL 可视化体素格网:https://blog.csdn.net/qq_36686437/article/details/109124691
2、PCL 点云按高程渲染颜色:https://blog.csdn.net/qq_36686437/article/details/109076885
3、PCL 点云可视化汇总:https://blog.csdn.net/qq_36686437/article/details/109596789
4、PCL 一个大窗口可视化两个点云:https://blog.csdn.net/qq_36686437/article/details/109805887
5、PCL 两个大窗口可视化两个点云:https://blog.csdn.net/qq_36686437/article/details/109964346
6、PCL 两个小窗口可视化点云:https://blog.csdn.net/qq_36686437/article/details/109960751
7、PCL 三个小窗口可视化点云:https://blog.csdn.net/qq_36686437/article/details/109963467
8、PCL 四个小窗口可视化点云:https://blog.csdn.net/qq_36686437/article/details/109960689
1、PCL 之vtk计算点云模型的法向量:https://blog.csdn.net/qq_36686437/article/details/111301744
2、PCL 之vtk计算点云模型的曲率:https://blog.csdn.net/qq_36686437/article/details/111303020
3、PCL 之vtk实现ICP配准:https://blog.csdn.net/qq_36686437/article/details/111303624
4、PCL 之vtk读取3d max模型并可视化:https://blog.csdn.net/qq_36686437/article/details/111303817
5、PCL 之vtk计算点云模型的面积和体积:https://blog.csdn.net/qq_36686437/article/details/109553091
6、PCL 之vtk常见错误解决办法:https://blog.csdn.net/qq_36686437/article/details/111361609