使用tensorflow搭建并训练不同网络--完整版
- 基于tensorflow的不同网络的搭建与实现
-
- 自编码网络TensorFlow实现
- 最浅神经网络tensorflow实现
- tensorflow实现传统神经网络
- TensorFlow实现训练神经网络
- tensorflow实现卷积神经网络
- 原理概述
-
- 应用领域
基于tensorflow的不同网络的搭建与实现
自编码网络TensorFlow实现
'''
TensorFlow的自编码网络实现(无监督学习)
'''
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
trX, trY = mnist.train.images, mnist.train.labels
teX, teY = mnist.test.images, mnist.test.labels
learning_rate = 0.01
training_epochs = 20
batch_size = 256
display_step = 1
examples_to_show = 10
n_hidden_1 = 256
n_hidden_2 = 128
n_input = 784
X = tf.placeholder('float', [None, n_input])
weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([n_input])),
}
def encoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
return layer_2
def decoder(x):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
return layer_2
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)
y_pred = decoder_op
y_true = X
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
with tf.Session() as sess:
tf.global_variables_initializer().run()
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(200):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={
X: batch_xs})
if epoch % display_step == 0:
print("Epoch: ", "%04d" % (epoch + 1), "cost=", "{:.9f}".format(c))
print("Optimization Finished!")
encode_decode = sess.run(y_pred, feed_dict={
X: mnist.test.images[:examples_to_show]})
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(examples_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
f.show()
plt.draw()
plt.waitforbuttonpress()
最浅神经网络tensorflow实现
"""
这个demo 可以算作是一个没有隐含层的最浅的神经网络tensorflow实现
"""
import tensorflow as tf
import numpy as np
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),
reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
tf.global_variables_initializer().run()
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
train_step.run({
x: batch_xs, y_:batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels}))
tensorflow实现传统神经网络
"""
tensorflow实现传统的神经网络
"""
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
BATCH_SIZE = 100
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 784
TRAIN_STEP = 10000
LEARNING_RATE = 0.01
L2NORM_RATE = 0.001
def train(mnist):
input_x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='input_x')
input_y = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='input_y')
w1 = tf.Variable(tf.truncated_normal(shape=[INPUT_NODE, LAYER1_NODE], stddev=0.1))
b1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
w2 = tf.Variable(tf.truncated_normal(shape=[LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
b2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
layer1 = tf.nn.relu(tf.nn.xw_plus_b(input_x, w1, b1))
y_hat = tf.nn.xw_plus_b(layer1, w2, b2)
print("1 step ok!")
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=y_hat, labels=input_y)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
regularization = tf.nn.l2_loss(w1) + tf.nn.l2_loss(w2) + tf.nn.l2_loss(b1) + tf.nn.l2_loss(b2)
loss = cross_entropy_mean + L2NORM_RATE * regularization
print("2 step ok")
correct_predictions = tf.equal(tf.argmax(y_hat, 1), tf.argmax(input_y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
print("3 step ok")
global_step = tf.Variable(0, trainable=False)
train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(loss, global_step=global_step)
print("4 step ok ")
with tf.Session() as sess:
tf.global_variables_initializer().run()
print("5 step OK")
for i in range(TRAIN_STEP):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
feed_dict = {
input_x: xs,
input_y: ys,
}
_, step, train_loss, train_acc = sess.run([train_op, global_step, loss, accuracy], feed_dict=feed_dict)
if (i % 100 == 0):
print("After %d steps, in train data, loss is %g, accuracy is %g." % (step, train_loss, train_acc))
test_feed = {
input_x: mnist.test.images, input_y: mnist.test.labels}
test_acc = sess.run(accuracy, feed_dict=test_feed)
print("After %d steps, in test data, accuracy is %g." % (TRAIN_STEP, test_acc))
if __name__ == '__main__':
mnist = input_data.read_data_sets(
"MNIST_data/",
one_hot=True)
print("0 step ok!")
train(mnist)
TensorFlow实现训练神经网络
'''
TensorFlow实现训练神经网络(监督学习)
'''
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import tensorflow.examples.tutorials.mnist.input_data as input_data
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAT = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2
else:
layer1 = tf.nn.relu(
tf.matmul(input_tensor, avg_class.average(weights1)) +
avg_class.average(biases1)
)
return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2)
def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
weights1 = tf.Variable(
tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
weights2 = tf.Variable(
tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
y = inference(x, None, weights1, biases1, weights2, biases2)
global_step = tf.Variable(0, trainable=False)
varibale_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY, global_step
)
varibale_averages_op = varibale_averages.apply(tf.trainable_variables())
average_y = inference(x, varibale_averages, weights1, biases1, weights2, biases2)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
regularization = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularization
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAT,
staircase=True
)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, varibale_averages_op]):
train_op = tf.no_op(name='train')
correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {
x: mnist.validation.images,
y_: mnist.validation.labels}
test_feed = {
x: mnist.test.images, y_: mnist.test.labels}
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print('After %d training step(s), validation accuracy using average model is %g' % (i, validate_acc))
xs, ys = mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op, feed_dict={
x: xs, y_: ys})
test_acc = sess.run(accuracy, feed_dict=test_feed)
print('After %d training step(s), test accuracy using average model is %g' % (TRAINING_STEPS, test_acc))
def main(argv=None):
mnist = input_data.read_data_sets(
"MNIST_data/",
one_hot=True)
train(mnist)
if __name__ == '__main__':
main()
tensorflow实现卷积神经网络
"""
tensorflow实现 卷积神经网络-CNN训练
"""
import tensorflow as tf
import numpy as np
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets(
"MNIST_data/",
one_hot=True)
trX, trY = mnist.train.images, mnist.train.labels
teX, teY = mnist.test.images, mnist.test.labels
'''
trX.shape: (55000, 784)
trY.shape: (55000, 10)
teX.shape: (10000, 784)
teY.shape: (10000, 10)
'''
trX = trX.reshape(-1, 28, 28, 1)
teX = teX.reshape(-1, 28, 28, 1)
X = tf.placeholder('float', [None, 28, 28, 1])
Y = tf.placeholder('float', [None, 10])
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
w = init_weights([3, 3, 1, 32])
w2 = init_weights([3, 3, 32, 64])
w3 = init_weights([3, 3, 64, 128])
w4 = init_weights([128 * 4 * 4, 625])
w_o = init_weights([625, 10])
def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden):
l1a = tf.nn.relu(tf.nn.conv2d(X, w, strides=[1, 1, 1, 1], padding='SAME'))
l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
l1 = tf.nn.dropout(l1, p_keep_conv)
l2a = tf.nn.relu(tf.nn.conv2d(l1, w2, strides=[1, 1, 1, 1], padding='SAME'))
l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
l2 = tf.nn.dropout(l2, p_keep_conv)
l3a = tf.nn.relu(tf.nn.conv2d(l2, w3, strides=[1, 1, 1, 1], padding='SAME'))
l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]])
l3 = tf.nn.dropout(l3, p_keep_conv)
l4 = tf.nn.relu(tf.matmul(l3, w4))
l4 = tf.nn.dropout(l4, p_keep_hidden)
pyx = tf.matmul(l4, w_o)
return pyx
p_keep_conv = tf.placeholder('float')
p_keep_hidden = tf.placeholder('float')
py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(py_x, 1)
batch_size = 128
test_size = 256
with tf.Session() as sess:
tf.global_variables_initializer().run()
echo = 2
for i in range(echo):
training_batch = zip(range(0, len(trX), batch_size),
range(batch_size, len(trX) + 1, batch_size))
for start, end in training_batch:
sess.run(train_op, feed_dict={
X: trX[start:end], Y: trY[start:end],
p_keep_conv: 0.8,
p_keep_hidden: 0.5
})
print('第%d次测试,'%(i+1))
print('测试精度为:',np.mean(np.argmax(teY[test_size*(i):test_size*(i+1)], axis=1) ==
sess.run(predict_op, feed_dict={
X: teX[test_size*(i):test_size*(i+1)],p_keep_conv: 1.0, p_keep_hidden: 1.0})))
原理概述
自编码器
- 自编码器
- 介绍:自编码器可以模仿输入,并在输出处生成确切的信息。简而言之,自动编码器是旨在将其输入复制到其输出的神经网络。他们通过将输入压缩为一个潜在空间表示,然后从该表示重构输出来进行工作。
- 结构:两部分,编码器和解码器,编码器将输入转换为隐藏空间,解码器将输入信息重建为输出。
编码器:这是网络中将输入压缩为潜在空间表示的部分。它可以由编码函数h = f(x)表示。
解码器:这部分旨在从潜在空间表示中重建输入。它可以由解码函数r = g(h)表示。
- 类型:
- 不完整的自编码器:隐藏的尺寸小于输入的尺寸。优点是可捕获最突出的特征,即降维。缺点是需要大量数据,否则会过拟合。
- 正则化自编码器:不限制尺寸和隐藏层大小,有损失函数
稀疏自编码器:允许表示信息瓶颈,无需减小隐藏层的大小。取而代之的是基于损失函数对层内的激活进行惩罚。
- 去噪自编码器:学习通用的encode和decode。它灵敏到能重新生成原始输入,但不过拟合。方法是将未损坏数据和特定噪声一起作为输入。
- 压缩自编码器:如果输入相似,那么该编码器的输出也相似。方法是强制重建特征抵抗特征的微小变化,而收缩式自编码器抵抗输入扰动。
- 变分自编码器:为每个隐藏特征生成一个概率分布。
卷积神经网络
- 综述
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。卷积网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式,只要用已知的模式对卷积网络加以训练,网络就具有输入输出对之间的映射能力。卷积神经网络CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显式的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。
- 卷积层
在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。
- 池化层(pooling)
子采样也叫做池化,通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
- 激活函数 (Activation function)
常用的激活函数有sigmoid、tanh、relu等等,前两者sigmoid/tanh比较常见于全连接层,后者ReLU常见于卷积层。激活函数的作用是用来加入非线性因素,把卷积层输出结果做非线性映射。
- 全连接层(Fully connected layers)
全连接层在整个卷积神经网络中起到“分类器”的作用,即通过卷积、激活函数、池化等深度网络后,再经过全连接层对结果进行识别分类。
应用领域
- 图像检索
- 图像检测
- 语音识别
- 不同场景下的图像识别