工科矢量分析公式大全

文章目录

  • 工科矢量分析公式大全
    • #三重标积
    • #三重矢积
    • #柱坐标系
    • #球坐标系
    • #三系转换
    • #梯度
    • #散度
    • #旋度
    • #标函数的拉普拉斯
    • #若干 ∇ \nabla 基本公式
    • #若干定理
  • 符号助手
    • # E i n s t e i n Einstein Einstein求和约定
    • # K r o n e c k e r Kronecker Kronecker符号 δ \delta δ
    • # L e v i − C e v i t a Levi-Cevita LeviCevita符号 ε \varepsilon ε


工科矢量分析公式大全

#三重标积

C ⃗ ⋅ ( A ⃗ × B ⃗ ) = ∣ A ⃗ ∣ ∣ B ⃗ ∣ ∣ C ⃗ ∣ ⋅ s i n ( θ ) ⋅ c o s ( ϕ ) = A ⃗ ⋅ ( B ⃗ × C ⃗ ) = B ⃗ ⋅ ( C ⃗ × A ⃗ ) = − C ⃗ ⋅ ( B ⃗ × A ⃗ ) \vec{C} \cdot ( \vec{A} \times \vec{B}) = | \vec{A} | | \vec{B} | | \vec{C} | \cdot sin(\theta) \cdot cos(\phi) = \vec{A} \cdot ( \vec{B} \times \vec{C}) = \vec{B} \cdot ( \vec{C} \times \vec{A}) = - \vec{C} \cdot ( \vec{B} \times \vec{A}) C (A ×B )=A B C sin(θ)cos(ϕ)=A (B ×C )=B (C ×A )=C (B ×A )

可轮换

#三重矢积

C ⃗ × ( A ⃗ × B ⃗ ) ≠ ( C ⃗ × A ⃗ ) × B ⃗     A ⃗ × ( B ⃗ × C ⃗ ) = ( A ⃗ ⋅ C ⃗ ) ⋅ B ⃗ − ( A ⃗ ⋅ B ⃗ ) ⋅ C ⃗ \vec{C} \times ( \vec{A} \times \vec{B}) \ne ( \vec{C} \times \vec{A} ) \times \vec{B} \\\\\ \\\ \vec{A} \times ( \vec{B} \times \vec{C}) = ( \vec{A} \cdot \vec{C} ) \cdot \vec{B} - ( \vec{A} \cdot \vec{B} ) \cdot \vec{C} C ×(A ×B )=(C ×A )×B   A ×(B ×C )=(A C )B (A B )C

不满足结合律

#柱坐标系

{ x = ρ ⋅ c o s ϕ y = ρ ⋅ s i n ϕ z = z     { ρ = x 2 + y 2 ϕ = a r c t a n ( y x ) z = z     d S = ρ ⋅ d ϕ ⋅ d z     d V = ρ ⋅ d ρ ⋅ d ϕ ⋅ d z \left \{ \begin{array}{c} x=\rho \cdot cos\phi \\ y=\rho \cdot sin\phi \\ z=z \end{array} \right . \\\\\ \\\ \left \{ \begin{array}{c} \rho= \sqrt{x^2+y^2} \\ \phi = arctan(\frac{y}{x}) \\ z=z \end{array} \right. \\\\\ \\\ dS= \rho\cdot d\phi \cdot dz \\\\\ \\\ dV = \rho \cdot d\rho \cdot d\phi \cdot dz x=ρcosϕy=ρsinϕz=z  ρ=x2+y2 ϕ=arctan(xy)z=z  dS=ρdϕdz  dV=ρdρdϕdz

#球坐标系

{ x = r ⋅ s i n θ ⋅ c o s ϕ y = r ⋅ s i n θ ⋅ s i n ϕ z = r ⋅ c o s θ     { r = x 2 + y 2 + z 2 θ = a r c t a n ( x 2 + y 2 z ) ϕ = a r c t a n ( y x )     d S = r 2 ⋅ s i n θ ⋅ d θ ⋅ d ϕ     d V = r 2 ⋅ s i n θ ⋅ d r ⋅ d θ ⋅ d ϕ \left \{ \begin{array}{c} x=r \cdot sin\theta \cdot cos\phi \\ y=r \cdot sin\theta \cdot sin\phi \\ z=r \cdot cos\theta \end{array} \right . \\\\\ \\\ \left \{ \begin{array}{c} r= \sqrt{x^2+y^2+z^2} \\ \theta = arctan(\frac{ \sqrt{x^2+y^2} }{z}) \\ \phi = arctan(\frac{y}{x}) \end{array} \right. \\\\\ \\\ dS= r^2\cdot sin\theta \cdot d\theta \cdot d\phi \\\\\ \\\ dV = r^2\cdot sin\theta \cdot dr \cdot d\theta \cdot d\phi x=rsinθcosϕy=rsinθsinϕz=rcosθ  r=x2+y2+z2 θ=arctan(zx2+y2 )ϕ=arctan(xy)  dS=r2sinθdθdϕ  dV=r2sinθdrdθdϕ

#三系转换

[ A ρ A ϕ A z ] = [ c o s ϕ s i n ϕ 0 − s i n ϕ c o s ϕ 0 0 0 1 ] [ A x A y A z ]     [ A r A θ A ϕ ] = [ s i n θ c o s ϕ s i n θ s i n ϕ c o s θ c o s θ c o s ϕ c o s θ s i n ϕ − s i n θ − s i n ϕ c o s ϕ 0 ] [ A x A y A z ]     [ A r A θ A ϕ ] = [ s i n θ 0 c o s θ c o s θ 0 − s i n ϕ 0 1 0 ] [ A ρ A ϕ A z ] \begin{bmatrix}A_\rho\\A_\phi\\A_z \end{bmatrix} =\begin{bmatrix}cos\phi & sin\phi & 0 \\ -sin\phi & cos\phi & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}A_x\\A_y\\A_z \end{bmatrix} \\\\\ \\\ \begin{bmatrix}A_r\\A_\theta\\A_\phi \end{bmatrix} =\begin{bmatrix}sin\theta cos\phi &sin\theta sin\phi & cos\theta \\ cos\theta cos\phi & cos\theta sin\phi & -sin\theta\\ -sin\phi & cos\phi & 0 \end{bmatrix} \begin{bmatrix}A_x\\A_y\\A_z \end{bmatrix} \\\\\ \\\ \begin{bmatrix}A_r\\A_\theta\\A_\phi \end{bmatrix} =\begin{bmatrix}sin\theta & 0 & cos\theta \\ cos\theta & 0 & -sin\phi\\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix}A_\rho\\A_\phi\\A_z \end{bmatrix} AρAϕAz=cosϕsinϕ0sinϕcosϕ0001AxAyAz  ArAθAϕ=sinθcosϕcosθcosϕsinϕsinθsinϕcosθsinϕcosϕcosθsinθ0AxAyAz  ArAθAϕ=sinθcosθ0001cosθsinϕ0AρAϕAz

#梯度

∇ f = ∂ f ∂ x e x ⃗ + ∂ f ∂ y e y ⃗ + ∂ f ∂ z e z ⃗     = ∂ f ∂ ρ e ρ ⃗ + 1 ρ ∂ f ∂ ϕ e ϕ ⃗ + ∂ f ∂ z e z ⃗     = ∂ f ∂ r e r ⃗ + 1 r ∂ f ∂ θ e θ ⃗ + 1 r s i n θ ∂ f ∂ ϕ e ϕ ⃗   梯 度 的 模 为 最 大 变 化 率 \nabla f = \frac{\partial f}{\partial x}\vec{e_x}+\frac{\partial f}{\partial y}\vec{e_y}+\frac{\partial f}{\partial z}\vec{e_z} \\\\\ \\\ = \frac{\partial f}{\partial \rho}\vec{e_\rho}+ \color{red} \frac 1 \rho \color{black}\frac{\partial f}{\partial \phi}\vec{e_\phi}+\frac{\partial f}{\partial z}\vec{e_z} \\\\\ \\\ = \frac{\partial f}{\partial r}\vec{e_r}+\color{red}\frac 1r \color{black} \frac{\partial f}{\partial \theta}\vec{e_\theta}+ \color{red}\frac{1}{rsin\theta } \color{black} \frac{\partial f}{\partial \phi}\vec{e_\phi}\\\ \\ 梯度的模为最大变化率 f=xfex +yfey +zfez   =ρfeρ +ρ1ϕfeϕ +zfez   =rfer +r1θfeθ +rsinθ1ϕfeϕ  

#散度

∇ ⋅ A ⃗ = ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z     = 1 ρ ∂ ( ρ A ρ ) ∂ ρ + 1 ρ ∂ ( A ϕ ) ∂ ϕ + ∂ ( A z ) ∂ z     = 1 r 2 ∂ ( r 2 A r ) ∂ r + 1 r s i n θ ∂ ( s i n θ A θ ) ∂ θ + 1 r s i n θ ∂ ( A ϕ ) ∂ ϕ \nabla \cdot \bm{\vec{A}} = \frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z} \\\\\ \\\ =\color{red} \frac 1 \rho \color{black} \frac{\partial (\color{red}\rho \color{black} A_\rho)}{\partial \rho}+ \color{red} \frac 1 \rho \color{black}\frac{\partial (A_\phi)}{\partial \phi}+\frac{\partial (A_z)}{\partial z} \\\\\ \\\ =\color{red} \frac{1}{ r^2} \color{black} \frac{\partial (\color{red} r^2\color{black} A_r)}{\partial r}+ \color{red}\frac{1}{rsin\theta } \color{black} \color{black} \frac{\partial (\color{red} sin\theta\color{black} A_\theta)}{\partial \theta}+ \color{red}\frac{1}{rsin\theta } \color{black} \frac{\partial (A_\phi)}{\partial \phi} A =xAx+yAy+zAz  =ρ1ρ(ρAρ)+ρ1ϕ(Aϕ)+z(Az)  =r21r(r2Ar)+rsinθ1θ(sinθAθ)+rsinθ1ϕ(Aϕ)

#旋度

∇ × B ⃗ = ∣ e x ⃗ e y ⃗ e z ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z B x ⃗ B y ⃗ B z ⃗ ∣     = 1 ρ ∣ e ρ ⃗ ρ e ϕ ⃗ e z ⃗ ∂ ∂ ρ ∂ ∂ ϕ ∂ ∂ z B ρ ⃗ ρ B ϕ ⃗ B z ⃗ ∣     = 1 r 2 s i n θ ∣ e r ⃗ r e θ ⃗ r s i n θ e ϕ ⃗ ∂ ∂ r ∂ ∂ θ ∂ ∂ ϕ B r ⃗ r B θ ⃗ r s i n θ B ϕ ⃗ ∣ \nabla \times \bm{\vec{B}}= \begin{vmatrix}\vec{e_x} & \vec{e_y} & \vec{e_z} \\\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\\\ \vec{B_x} & \vec{B_y} & \vec{B_z} \end{vmatrix} \\\\\ \\\ =\color{red} \frac 1 \rho \color{black} \begin{vmatrix}\vec{e_\rho} & \color{red} \rho \color{black}\vec{e_\phi} & \vec{e_z} \\\\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z}\\\\ \vec{B_\rho} & \color{red} \rho \color{black}\vec{B_\phi} & \vec{B_z} \end{vmatrix} \\\\\ \\\ =\color{red}\frac{1}{r^2sin\theta } \color{black} \begin{vmatrix}\vec{e_r} & \color{red} r \color{black}\vec{e_\theta} & \color{red} rsin\theta \color{black}\vec{e_\phi} \\\\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi}\\\\ \vec{B_r} & \color{red} r \color{black}\vec{B_\theta} & \color{red} rsin\theta \color{black}\vec{B_\phi} \end{vmatrix} ×B =ex xBx ey yBy ez zBz   =ρ1eρ ρBρ ρeϕ ϕρBϕ ez zBz   =r2sinθ1er rBr reθ θrBθ rsinθeϕ ϕrsinθBϕ

#标函数的拉普拉斯

∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2     = 1 ρ ∂ ∂ ρ ( ρ ∂ f ∂ ρ ) + 1 ρ 2 ∂ 2 f ∂ ϕ 2 + ∂ 2 f ∂ z 2     = 1 r 2 ∂ ∂ r ( r 2 ∂ f ∂ r ) + 1 r 2 s i n θ ∂ ∂ θ ( s i n θ ∂ f ∂ θ ) + 1 r 2 s i n 2 θ ∂ 2 f ∂ ϕ 2 \nabla^2f=\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}+\frac{\partial^2f}{\partial z^2} \\\\\ \\\ = \color{red} \frac 1 \rho\color{black} \frac{\partial} {\partial \rho}( \color{red} \rho\color{black} \frac{\partial f}{\partial \rho})+\color{red}\frac{1}{\rho^2 } \color{black} \frac{\partial^2f}{\partial \phi^2}+\frac{\partial^2f}{\partial z^2} \\\\\ \\\ =\color{red}\frac{1}{r^2 } \color{black}\frac{\partial} {\partial r}( \color{red} r^2\color{black} \frac{\partial f}{\partial r})+\color{red}\frac{1}{r^2sin\theta } \color{black}\frac{\partial}{\partial \theta}(\color{red} sin\theta\color{black} \frac{\partial f}{\partial \theta})+\color{red}\frac{1}{r^2sin^2\theta } \color{black} \frac{\partial^2f}{\partial \phi^2} 2f=x22f+y22f+z22f  =ρ1ρ(ρρf)+ρ21ϕ22f+z22f  =r21r(r2rf)+r2sinθ1θ(sinθθf)+r2sin2θ1ϕ22f

#若干 ∇ \nabla 基本公式

1 . 梯 度 无 旋 ∇ × ( ∇ f ) ≡ 0 \bm1.梯度无旋 \\ \nabla \times (\nabla f) \equiv 0 1.×(f)0


2 . 旋 度 无 散 ∇ ⋅ ( ∇ × F ⃗ ) ≡ 0 \bm2.旋度无散 \\ \nabla \cdot (\nabla \times \bm{\vec{F}}) \equiv 0 2.(×F )0


3 . 旋 度 的 旋 度 ∇ × ( ∇ × F ⃗ ) = ∇ ( ∇ ⋅ F ⃗ ) − ∇ 2 F ⃗     散 度 的 梯 度 − 并 积 的 散 度 散 度 的 梯 度 指 向 源 密 集 的 地 方 \bm3.旋度的旋度 \\ \nabla \times (\nabla \times \bm{\vec{F}}) = \nabla (\nabla \cdot \bm{\vec{F}}) -\nabla^2 \bm{\vec{F}} \\\\\ \\\ 散度的梯度-并积的散度\\ 散度的梯度指向源密集的地方 3.×(×F )=(F )2F   


4 . 点 乘 的 梯 度 ∇ ( a ⃗ ⋅ b ⃗ ) = ( a ⃗ ⋅ ∇ ) b ⃗ + ( b ⃗ ⋅ ∇ ) a ⃗ + a ⃗ × ( ∇ × b ⃗ ) + b ⃗ × ( ∇ × a ⃗ )     体 现 ∇ 的 矢 量 性 与 微 分 性 \bm4.点乘的梯度 \\ \nabla (\vec{a} \cdot \vec{b} ) =(\vec{a}\cdot\nabla)\vec{b}+(\vec{b}\cdot\nabla)\vec{a}+\vec{a}\times(\nabla\times\vec{b})+\vec{b}\times(\nabla\times\vec{a}) \\\\\ \\\ 体现\nabla的矢量性与微分性 4.(a b )=(a )b +(b )a +a ×(×b )+b ×(×a )  


5 . 叉 乘 的 散 度 ∇ ⋅ ( a ⃗ × b ⃗ ) = b ⃗ ⋅ ( ∇ × a ⃗ ) − a ⃗ ⋅ ( ∇ × b ⃗ ) \bm5.叉乘的散度\\ \nabla\cdot(\vec{a}\times\vec{b})=\vec{b}\cdot(\nabla\times\vec{a})-\vec{a}\cdot(\nabla\times\vec{b}) 5.(a ×b )=b (×a )a (×b )


6 . 叉 乘 的 旋 度 ∇ × ( a ⃗ × b ⃗ ) = a ⃗ ( ∇ ⋅ b ⃗ ) − b ⃗ ( ∇ ⋅ a ⃗ ) + ( b ⃗ ⋅ ∇ ) a ⃗ − ( a ⃗ ⋅ ∇ ) b ⃗ \bm6.叉乘的旋度\\ \nabla\times(\vec{a}\times\vec{b})=\vec{a}(\nabla\cdot\vec{b})-\vec{b}(\nabla\cdot\vec{a})+(\vec{b}\cdot\nabla)\vec{a}-(\vec{a}\cdot\nabla)\vec{b} 6.×(a ×b )=a (b )b (a )+(b )a (a )b

#若干定理

1. 高 斯 散 度 定 理 ∫ V   ∇ ⋅ F ⃗ d V = ∮ S F ⃗ ⋅ d S ⃗ \bm{1.高斯散度定理} \\ \int_V^\ \nabla \cdot \bm{\vec{F}} dV = \oint_S \bm{\vec{F}} \cdot d\vec{S} 1.V F dV=SF dS


2 . 斯 托 克 斯 定 理 ∫ S   ( ∇ × F ⃗ ) ⋅ d S = ∮ C F ⃗ ⋅ d l ⃗ \bm2.斯托克斯定理\\ \int_S^\ (\nabla \times \bm{\vec{F}} )\cdot dS = \oint_C \bm{\vec{F}} \cdot d\vec{l} 2.S (×F )dS=CF dl


3 . 标 量 格 林 定 理 ∮ V ∇ ⋅ ( Ψ ∇ Φ ) d V = ∮ S ( Ψ ∇ Φ ) ⋅ d S     对 ( Ψ ∇ Φ ) 用 高 斯 散 度 定 理 \bm3.标量格林定理\\ \oint_V \nabla \cdot (\Psi \nabla \Phi) dV = \oint_S (\Psi \nabla \Phi) \cdot dS \\\\\ \\\ 对 (\Psi \nabla \Phi) 用高斯散度定理 3.V(ΨΦ)dV=S(ΨΦ)dS  (ΨΦ)


4 . 矢 量 格 林 定 理 ∮ V ∇ ⋅ ( P ⃗ × ∇ × Q ⃗ ) d V = ∮ S ( P ⃗ × ∇ × Q ⃗ ) ⋅ d S     对 ( P ⃗ × ∇ × Q ⃗ ) 用 高 斯 散 度 定 理 \bm4.矢量格林定理\\ \oint_V \nabla \cdot (\vec{P}\times \nabla \times \vec{Q}) dV = \oint_S (\vec{P}\times \nabla \times \vec{Q}) \cdot dS \\\\\ \\\ 对 (\vec{P}\times \nabla \times \vec{Q})用高斯散度定理 4.V(P ××Q )dV=S(P ××Q )dS  (P ××Q )


符号助手

# E i n s t e i n Einstein Einstein求和约定

{ 不 写 ∑ 重 复 下 标 自 动 求 和 和 式 相 乘 下 标 不 能 相 同     a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + a 3 b 3 = ∑ i a i b i = a i b i \left \{ \begin{array}{c} 不写\sum \\ 重复下标自动求和 \\ 和式相乘下标不能相同 \end{array} \right. \\\\\ \\\ \vec{a}\cdot\vec{b}=a_1b_1+a_2b_2+a_3b_3=\sum_i a_ib_i \color{red}= a_ib_i   a b =a1b1+a2b2+a3b3=iaibi=aibi

# K r o n e c k e r Kronecker Kronecker符号 δ \delta δ

δ i j = { 0 , i ≠ j 1 , i = j     提 取     a ⃗ ⋅ b ⃗ = a i b i = δ i j a i b j     ( 1 ) δ i j = e i ⃗ ⋅ e j ⃗     ( 2 ) I → → = [ δ 11 δ 12 δ 13 δ 21 δ 22 δ 23 δ 31 δ 32 δ 33 ]     ( 3 ) δ i m ⋅ δ m j = δ i j     ( 4 ) e i ⃗ = [ δ i 1 δ i 2 δ i 3 ] \delta_{ij} = \begin{cases} 0, & i \ne j \\ 1, & i=j \end{cases} \\\\\ \\\ 提取 \\\\\ \\\ \vec{a}\cdot\vec{b}=a_ib_i \color{red}=\delta_{ij}a_ib_j\color{black} \\\\\ \\\ (1)\delta_{ij}=\vec{e_i}\cdot\vec{e_j}\\\\\ \\\ (2)\overrightarrow {\overrightarrow {I}}=\begin{bmatrix}\delta_{11} & \delta_{12} &\delta_{13}\\ \delta_{21} &\delta_{22}&\delta_{23}\\ \delta_{31} & \delta_{32} &\delta_{33}\end{bmatrix}\\\\\ \\\ (3)\delta_{im}\cdot\delta_{mj}=\delta_{ij}\\\\\ \\\ (4)\vec{e_i}=\begin{bmatrix}\delta_{i1} \\ \delta_{i2}\\\delta_{i3} \end{bmatrix} δij={ 0,1,i=ji=j    a b =aibi=δijaibj  (1)δij=ei ej   (2)I =δ11δ21δ31δ12δ22δ32δ13δ23δ33  (3)δimδmj=δij  (4)ei =δi1δi2δi3

# L e v i − C e v i t a Levi-Cevita LeviCevita符号 ε \varepsilon ε

ε i j k = { 1 , i j k = 123 , 231 , 312. − 1 , i j k = 321 , 213 , 132. 0 , o t h e r w i s e     a ⃗ × b ⃗ = ε i j k a i b j e k ⃗     ( 1 ) ε i j k = e i ⃗ ⋅ ( e j ⃗ × e k ⃗ )     ( 2 ) ε i j k = − ε j i k     ( 3 ) ε i j k ε l m n = ∣ δ i l δ i m δ i n δ j l δ j m δ j n δ k l δ k m δ k n ∣   ① ε i j k ε m n k = δ i m δ j n − δ i n δ j m   ② ε i j k ε m j k = 2 δ i m   ③ ε i j k ε i j k = 6   ④ e i ⃗ × e j ⃗ = ε i j k e k ⃗ \varepsilon_{ijk} = \begin{cases} 1, & i jk=123, 231, 312. \\ -1, & ijk=321, 213, 132. \\ 0,& otherwise \end{cases} \\\\\ \\\ \vec{a}\times\vec{b}\color{red}=\varepsilon_{ijk}a_ib_j\vec{e_k}\color{black}\\\\\ \\\ (1) \varepsilon_{ijk}=\vec{e_i}\cdot(\vec{e_j}\times\vec{e_k})\\\\\ \\\ (2)\varepsilon_{ijk}=-\varepsilon_{jik}\\\\\ \\\ (3)\varepsilon_{ijk}\varepsilon_{lmn}=\begin{vmatrix}\delta_{il} & \delta_{im} &\delta_{in}\\ \delta_{jl} &\delta_{jm}&\delta_{jn}\\ \delta_{kl} & \delta_{km} &\delta_{kn}\end{vmatrix}\\\\\ \\ ① \varepsilon_{ijk}\varepsilon_{mnk}=\delta_{im}\delta_{jn}-\delta_{in}\delta_{jm}\\\\\ \\ ② \varepsilon_{ijk}\varepsilon_{mjk}=2\delta_{im}\\\\\ \\ ③ \varepsilon_{ijk}\varepsilon_{ijk}=6\\\ \\ ④ \vec{e_i}\times\vec{e_j} = \varepsilon_{ijk}\vec{e_k} εijk=1,1,0,ijk=123,231,312.ijk=321,213,132.otherwise  a ×b =εijkaibjek   (1)εijk=ei (ej ×ek )  (2)εijk=εjik  (3)εijkεlmn=δilδjlδklδimδjmδkmδinδjnδkn εijkεmnk=δimδjnδinδjm εijkεmjk=2δim εijkεijk=6 ei ×ej =εijkek

你可能感兴趣的:(一些数学,latex,数学,公式,矢量分析,坐标转换)