python字典换行输出_python字典 更新

python字典

类似于java中的map集合,KV类型的数据结构。以下为书中解释

字典 与列表类似,但是更加通用。 在列表中,索引必须是整数;但在字典中,它们可以是(几乎)任何类型。

字典包含了一个索引的集合,被称为 键(keys) ,和一个值(values)的集合。 一个键对应一个值。这种一一对应的关联被称为 键值对(key-value pair) , 有时也被称为 项(item)。

在数学语言中,字典表示的是从键到值的 映射,所以你也可以说每一个键 “映射到” 一个值。 举个例子,我们接下来创建一个字典,将英语单词映射至西班牙语单词,因此键和值都是字符串。

dict函数生成一个不含任何项的新字典。 由于 dict 是内建函数名,你应该避免使用它来命名变量。

>>> eng2sp = dict()

>>> eng2sp

{}

花括号 {} 表示一个空字典。你可以使用方括号向字典中增加项:

>>> eng2sp['one'] = 'uno'

这行代码创建一个新项,将键 'one' 映射至值 'uno'。 如果我们再次打印该字典,会看到一个以冒号分隔的键值对:

eng2sp

{'one': 'uno'}

输出的格式同样也是输入的格式。 例如,你可以像这样创建一个包含三个项的字典:

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

但是,如果你打印 eng2sp ,结果可能会让你感到意外:

>>> eng2sp

{'one': 'uno', 'three': 'tres', 'two': 'dos'}

键-值对的顺序和原来不同。 同样的例子在你的电脑上可能有不同的结果。通常来说,字典中项的顺序是不可预知的。

但这没有关系,因为字典的元素不使用整数索引来索引,而是用键来查找对应的值:

>>> eng2sp['two']

'dos'

键 'two' 总是映射到值 'dos' ,因此项的顺序没有关系。

如果键不存在字典中,会抛出一个异常:

>>> eng2sp['four']

KeyError: 'four'

len函数也适用于字典;它返回键值对的个数:

>>> len(eng2sp)

3

in操作符也适用于字典;它可以用来检验字典中是否存在某个 键 (仅仅有这个值还不够)。

>>> 'one' in eng2sp

True

>>> 'uno' in eng2sp

False

想要知道字典中是否存在某个值,你可以使用 values 方法,它返回值的集合,然后你可以使用 in 操作符来验证:

>>> vals = eng2sp.values()

>>> 'uno' in vals

True

in操作符对列表和字典采用不同的算法。 对于列表,它按顺序依次查找目标,如搜索一节所示。 随着列表的增长,搜索时间成正比增长。

对于字典,Python使用一种叫做 哈希表(hashtable) 的算法, 这种算法具备一种了不起的特性: 无论字典中有多少项,in 运算符搜索所需的时间都是一样的。

字典作为计数器集合

假设给你一个字符串,你想计算每个字母出现的次数。 有多种方法可以使用:

你可以生成26个变量,每个对应一个字母表中的字母。然后你可以遍历字符串,对于 每个字符,递增相应的计数器,你可能会用到链式条件。

你可以生成具有26个元素的列表。然后你可以将每个字符转化为一个数字(使用内建函数 ord ),使用这些数字作为列表的索引,并递增适当的计数器。

你可以生成一个字典,将字符作为键,计数器作为相应的值。字母第一次出现时,你应该向字典中增加一项。 这之后,你应该递增一个已有项的值。

每个方法都是为了做同一件事,但是各自的实现方法不同。

实现 是指执行某种计算的方法;有的实现更好。 例如,使用字典的实现有一个优势,即我们不需要事先知道字符串中有几种字母, 只要在出现新字母时分配空间就好了。

代码可能是这样的:

def histogram(s):

d = dict()

for c in s:

if c not in d:

d[c] = 1

else:

d[c] += 1

return d

函数名叫 histogram (直方图) ,是计数器(或是频率)集合的统计术语。

函数的第一行生成一个空字典。for 循环遍历该字符串。 每次循环,如果字符 c 不在字典中, 我们用键 c 和初始值 1 生成一个新项 (因为该字母出现了一次)。 如果 c 已经在字典中了,那么我们递增 d[c] 。

下面是运行结果:

>>> h = histogram('brontosaurus')

>>> h

{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

histogram函数表明字母 'a' 和 'b' 出现了一次, 'o' 出现了两次,等等。

字典类有一个 get 方法,接受一个键和一个默认值作为参数。 如果字典中存在该键,则返回对应值;否则返回传入的默认值。例如:

>>> h = histogram('a')

>>> h

{'a': 1}

>>> h.get('a', 0)

1

>>> h.get('b', 0)

0

循环和字典

在 for 循环中使用字典会遍历其所有的键。 例如,下面的 print_hist 会打印所有键与对应的值:

def print_hist(h):

for c in h:

print(c, h[c])

输出类似:

>>> h = histogram('parrot')

>>> print_hist(h)

a 1

p 1

r 2

t 1

o 1

重申一遍,字典中的键是无序的。 如果要以确定的顺序遍历字典,你可以使用内建方法 sorted:

>>> for key in sorted(h):

... print(key, h[key])

a 1

o 1

p 1

r 2

t 1

逆向查找

给定一个字典 d 以及一个键 t ,很容易找到相应的值 v = d[k] 。 该运算被称作 查找(lookup) 。

但是如果你想通过 v 找到 k 呢? 有两个问题:第一,可能有不止一个的键其映射到值v。 你可能可以找到唯一一个,不然就得用 list 把所有的键包起来。 第二,没有简单的语法可以完成 逆向查找(reverse lookup);你必须搜索。

下面这个函数接受一个值并返回映射到该值的第一个键:

def reverse_lookup(d, v):

for k in d:

if d[k] == v:

return k

raise LookupError()

该函数是搜索模式的另一个例子,但是它使用了一个我们之前没有见过的特性,raise。 raise 语句 能触发异常,这里它触发了 ValueError,这是一个表示查找操作失败的内建异常。

如果我们到达循环结尾,这意味着字典中不存在 v 这个值,所以我们触发一个异常。

下面是一个成功逆向查找的例子:

>>> h = histogram('parrot')

>>> key = reverse_lookup(h, 2)

>>> key

'r'

和一个失败的例子:

>>> key = reverse_lookup(h, 3)

Traceback (most recent call last):

File "", line 1, in

File "", line 5, in reverse_lookup

LookupError

你触发的异常和 Python 触发的产生效果一样:都打印一条回溯和错误信息。

raise语句接受一个详细的错误信息作为可选的实参。 例如:

>>> raise LookupError('value does not appear in the dictionary')

Traceback (most recent call last):

File "", line 1, in ?

LookupError: value does not appear in the dictionary

逆向查找比正向查找慢得多; 如果你频繁执行这个操作或是字典很大,程序性能会变差。

字典和列表

在字典中,列表可以作为值出现。 例如,如果你有一个从字母映射到频率的字典, 而你想倒转它; 也就是生成一个从频率映射到字母的字典。 因为可能有些字母具有相同的频率,所以在倒转字典中的每个值应该是一个字母组成的列表。

下面是一个倒转字典的函数:

def invert_dict(d):

inverse = dict()

for key in d:

val = d[key]

if val not in inverse:

inverse[val] = [key]

else:

inverse[val].append(key)

return inverse

每次循环,key 从 d 获得一个键和相应的值 val 。 如果 val 不在 inverse 中,意味着我们之前没有见过它, 因此我们生成一个新项并用一个 单元素集合(singleton) (只包含一个元素的列表)初始化它。 否则就意味着之前已经见过该值,因此将其对应的键添加至列表。

举个例子:

>>> hist = histogram('parrot')

>>> hist

{'a': 1, 'p': 1, 'r': 2, 't': 1, 'o': 1}

>>> inverse = invert_dict(hist)

>>> inverse

{1: ['a', 'p', 't', 'o'], 2: ['r']}

python字典换行输出_python字典 更新_第1张图片

图11-1:状态图

图11-1:状态图是关于 hist 与 inverse 的状态图。字典用标有类型dict的方框表示,方框中是键值对。如果值是整数、浮点数或字符串, 我就把它们画在方框内部,但我通常把列表画在方框外面,目的只是为了不让图表变复杂。

如本例所示,列表可以作为字典中的值,但是不能是键。 下面演示了这样做的结果:

>>> t = [1, 2, 3]

>>> d = dict()

>>> d[t] = 'oops'

Traceback (most recent call last):

File "", line 1, in ?

TypeError: list objects are unhashable

我之前提过,字典使用哈希表实现,这意味着键必须是 可哈希的(hashable) 。

哈希(hash) 函数接受一个值(任何类型)并返回一个整数。 字典使用被称作哈希值的这些整数,来存储和查找键值对。

如果键是不可变的,那么这种实现可以很好地工作。 但是如果键是可变的,如列表,那么就会发生糟糕的事情。 例如,当你生成一个键值对时,Python哈希该键并将其存储在相应的位置。 如果你改变键然后再次哈希它,它将被存储到另一个位置。 在那种情况下,对于相同的键,你可能有两个值, 或者你可能无法找到一个键。 无论如何,字典都不会正确的工作。

这就是为什么键必须是可哈希的,以及为什么如列表这种可变类型不能作为键。 绕过这种限制最简单的方法是使用元组, 我们将在下一章中介绍。

因为字典是可变的,因此它们不能作为键,但是 可以 用作值。

全局变量

在前面的例子中,known 是在函数的外部创建的, 因此它属于被称作 __main__ 的特殊帧。 因为 __main__ 中的变量可以被任何函数访问,它们也被称作 全局变量(global) 。 与函数结束时就会消失的局部变量不同,不同函数调用时全局变量一直都存在。

全局变量普遍用作 标记(flag); 也就是说明(标记)一个条件是否为真的布尔变量。 例如,一些程序使用一个被称作 verbose 的标记来控制输出的丰富程度:

verbose = True

def example1():

if verbose:

print('Running example1')

如果你试图对一个全局变量重新赋值,结果可能出乎意料。 下面的例子本应该记录函数是否已经被调用过了:

been_called = False

def example2():

been_called = True # 错误

但是如果你运行它,你会发现 been_called 的值并未发生改变。 问题在于 example2 生成了一个新的被称作 been_called 的局部变量。 当函数结束的时候,该局部变量也消失了,并且对全局变量没有影响。

要在函数内对全局变量重新赋值,你必须在使用之前 声明(declare) 该全局变量:

been_called = False

def example2():

global been_called

been_called = True

global 语句 告诉编译器,“在这个函数里,当我说 been_called 时,我指的是那个全局变量,别生成局部变量”。

下面是一个试图更新全局变量的例子:

count = 0

def example3():

count = count + 1 # 错误

一旦运行,你会发现:

UnboundLocalError: local variable 'count' referenced before assignment

Python默认 count 是局部变量,在这个假设下,你这是在未写入任何东西前就试图读取。 解决方法还是声明 count 是全局变量。

def example3():

global count

count += 1

如果全局变量是可变的,你可以不加声明地修改它:

known = {0:0, 1:1}

def example4():

known[2] = 1

因此你可以增加、删除和替代全局列表或者字典的元素, 但是如果你想对变量重新赋值,你必须声明它:

def example5():

global known

known = dict()

全局变量有时是很有用的,但如果你的程序中有很多全局变量,而且修改频繁, 这样会增加程序调试的难度。

调试

当你操作较大的数据集时,通过打印并手工检查数据来调试很不方便。 下面是针对调试大数据集的一些建议:

缩小输入:

如果可能,减小数据集合的大小。 例如,如果程序读入一个文本文件,从前10行开始分析,或是找到更小的样例。 你可以选择编辑读入的文件,或是(最好)修改程序使它只读入前 n 行。

如果出错了,你可以将 n 缩小为会导致该错误的最小值,然后在查找和解决错误的同时,逐步增加 n 的值。

检查摘要和类型:

考虑打印数据的摘要,而不是打印并检查全部数据集合: 例如,字典中项的数目或者数字列表的总和。

运行时错误的一个常见原因,是值的类型不正确。 为了调试此类错误,打印值的类型通常就足够了。

编写自检代码:

有时你可以写代码来自动检查错误。 例如,如果你正在计算数字列表的平均数,你可以检查其结果是不是大于列表中最大的元素,或者小于最小的元素。 这被称 作“合理性检查”,因为它能检测出“不合理的”结果。

另一类检查是比较两个不同计算的结果,来看一下它们是否一致。这被称作“一致性检查”。

格式化输出:

格式化调试输出能够更容易定位一个错误。 我们在调试一节中看过一个示例。pprint 模块提供了一个 pprint 函数,它可以更可读的格式显示内建类型( pprint 代表 “pretty print”)。

重申一次,你花在搭建脚手架上的时间能减少你花在调试上的时间。

你可能感兴趣的:(python字典换行输出)