2021年 遥感图像目标检测SOTA模型及排行榜

2021年 遥感图像目标检测SOTA模型及排行榜

  • 本文禁止转载!!!
    • Baseline:
      • DOTA1.0 (Task1)
      • DOTA1.0 (Task2)
      • 可视化
    • 不同模型性能(mAP+文章+源码):
      • DOTA1.0 (Task1)
      • DOTA1.0 (Task2)
      • DOTA1.5 (Task1)
      • DOTA1.5 (Task2)
      • 相关文章:
  • 公众号:

本文禁止转载!!!

Baseline:

DOTA1.0 (Task1)

Model Backbone Training data Val data mAP Model Link Tricks lr schd Data Augmentation GPU Image/GPU Configs
FPN (baseline) ResNet50_v1 (600,800,1024)->800 DOTA1.0 trainval DOTA1.0 test 69.35 model No 1x No 2X GeForce RTX 2080 Ti 1 cfgs_dota1.0_res50_v2.py
FPN ResNet50_v1d (600,800,1024)->800 DOTA1.0 trainval DOTA1.0 test 70.87 model +InLD 1x No 2X GeForce RTX 2080 Ti 1 cfgs_dota1.0_res50_v3.py
FPN ResNet152_v1d (600,800,1024)->MS DOTA1.0 trainval DOTA1.0 test 76.20 (76.54) model ALL 2x Yes 2X GeForce RTX 2080 Ti 1 cfgs_dota1.0_res152_v1.py

DOTA1.0 (Task2)

Model Backbone Training data Val data mAP Model Link Tricks lr schd Data Augmentation GPU Image/GPU Configs
FPN (baseline) ResNet50_v1 (600,800,1024)->800 DOTA1.0 trainval DOTA1.0 test 76.03 model No 1x No 2X Quadro RTX 8000 1 cfgs_dota1.0_res50_v2.py
FPN (memory consumption) ResNet152_v1d (600,800,1024)->MS DOTA1.0 trainval DOTA1.0 test 81.23 model ALL 2x Yes 2X Quadro RTX 8000 1 cfgs_dota1.0_res152_v1.py

可视化

2021年 遥感图像目标检测SOTA模型及排行榜_第1张图片

不同模型性能(mAP+文章+源码):

DOTA1.0 (Task1)

Model Backbone mAP Paper Link Code Link Remark Recommend
FR-O (DOTA) ResNet101 52.93 CVPR2018 MXNet DOTA dataset, baseline
IENet ResNet101 57.14 arXiv:1912.00969 - anchor free
TOSO ResNet101 57.52 ICASSP2020 - geometric transformation
PIoU Loss DLA-34 60.5 ECCV2020 - IoU loss, anchor free
R2CNN ResNet101 60.67 arXiv:1706.09579 TF scene text, multi-task, different pooled sizes, baseline
RRPN ResNet101 61.01 TMM arXiv:1703.01086 TF scene text, rotation proposals, baseline
RetinaNet-H ResNet101 64.73 arXiv:1908.05612 TF single stage, baseline
Axis Learning ResNet101 65.98 Remote Sensing - single stage, anchor free
ICN ResNet101 68.16 ACCV2018 - image cascade, multi-scale
RADet ResNeXt101 69.09 Remote Sensing - enhanced FPN, mask rcnn
RoI Transformer ResNet101 69.56 CVPR2019 MXNet, Pytorch roi transformer
P-RSDet ResNet101 69.82 arXiv:2001.02988 - anchor free, polar coordinates
CAD-Net ResNet101 69.90 TGRS arXiv:1903.00857 - attention
O2-DNet Hourglass104 71.04 arXiv:1912.10694 - centernet, anchor free
AOOD ResNet101 71.18 Neural Computing and Applications - attention + R-DFPN
Cascade-FF ResNet152 71.80 ICME2020 - Refined RetinaNet + feature fusion
SCRDet ResNet101 72.61 ICCV2019 TF:R2CNN++, IoU-Smooth L1: RetinaNet-based, R3Det-based attention, angular boundary problem
SARD ResNet101 72.95 Access - IoU-based weighted loss
GLS-Net ResNet101 72.96 Remote Sensing - attention, saliency pyramid
DRN Hourglass104 73.23 CVPR(oral) code centernet, feature selection module, dynamic refinement head, new dataset (SKU110K-R)
FADet ResNet101 73.28 ICIP2019 - attention
MFIAR-Net ResNet152 73.49 Sensors - feature attention, enhanced FPN
R3Det ResNet152 73.74 arXiv:1908.05612 TF, Pytorch refined single stage, feature alignment
RSDet ResNet152 74.10 arXiv:1911.08299 - quadrilateral bbox, angular boundary problem
Gliding Vertex ResNet101 75.02 TPAMI arXiv:1911.09358 Pytorch quadrilateral bbox
Mask OBB ResNeXt-101 75.33 Remote Sensing - attention, multi-task
FFA ResNet101 75.7 ISPRS - enhanced FPN, rotation proposals
APE ResNeXt-101(32x4) 75.75 TGRS arXiv:1906.09447 - adaptive period embedding, length independent IoU (LIIoU)
CSL ResNet152 76.17 ECCV2020 TF:CSL_RetinaNet angular boundary problem
OWSR Ensemble (ResNet101 + ResNeXt101 + mdcn-ResNet101) 76.36 CVPR2019 WorkShop TGRS - enhanced FPN
R3Det++ ResNet152 76.56 arXiv:2004.13316 TF refined single stage, feature alignment, denoising
SCRDet++ ResNet101 76.81 arXiv:2004.13316 TF angular boundary problem, denoising

DOTA1.0 (Task2)

Model Backbone mAP Paper Link Code Link Remark Recommend
FR-H (DOTA) ResNet101 60.46 CVPR2018 MXNet DOTA dataset, baseline
Deep Active Learning ResNet18 64.26 arXiv:2003.08793 - CenterNet, Deep Active Learning
SBL ResNet50 64.77 arXiv:1810.08103 - single stage
FMSSD VGG16 72.43 TGRS - IoU-based weighted loss, enhanced FPN
ICN ResNet101 72.45 ACCV2018 - image cascade, multi-scale
IoU-Adaptive R-CNN ResNet101 72.72 Remote Sensing - IoU-based weighted loss, cascade
EFR VGG16 73.49 Remote Sensing Pytorch enhanced FPN
SCRDet ResNet101 75.35 ICCV2019 TF attention, angular boundary problem
FADet ResNet101 75.38 ICIP2019 - attention
MFIAR-Net ResNet152 76.07 Sensors - feature attention, enhanced FPN
Mask OBB ResNeXt-101 76.98 Remote Sensing - attention, multi-task
A2RMNet ResNet101 78.45 Remote Sensing - attention, enhanced FPN, different pooled sizes
OWSR Ensemble (ResNet101 + ResNeXt101 + mdcn-ResNet101) 78.79 CVPR2019 WorkShop TGRS - enhanced FPN
Parallel Cascade R-CNN ResNeXt-101 78.96 Journal of Physics: Conference Series - cascade rcnn
DM-FPN ResNet-Based 79.27 Remote Sensing - enhanced FPN
SCRDet++ ResNet101 79.35 arXiv:2004.13316 TF denoising

DOTA1.5 (Task1)

Model Backbone mAP Paper Link Code Link Remark Recommend
APE ResNeXt-101(32x4) 78.34 TGRS arXiv:1906.09447 - length independent IoU (LIIoU)
OWSR Ensemble (ResNet101 + ResNeXt101 + mdcn-ResNet101) 76.60 TGRS CVPR2019 WorkShop - enhanced FPN

DOTA1.5 (Task2)

Model Backbone mAP Paper Link Code Link Remark Recommend
OWSR Ensemble (ResNet101 + ResNeXt101 + mdcn-ResNet101) 79.50 TGRS CVPR2019 WorkShop - enhanced FPN

相关文章:

Model Paper Link Code Link Remark Recommend
SSSDET ICIP2019 arXiv:1909.00292 - vehicle detection, lightweight
AVDNet GRSL arXiv:1907.07477 - vehicle detection, small object
ClusDet ICCV2019 Caffe2 object cluster regions
DMNet CVPR2020 WorkShop - object cluster regions
OIS arXiv:1911.07732 related Pytorch code Oriented Instance Segmentation
LR-RCNN arXiv:2005.14264 - vehicle detection -

公众号:

2021年 遥感图像目标检测SOTA模型及排行榜_第2张图片

你可能感兴趣的:(深度学习-目标检测,遥感图像目标检测,计算机视觉,python,人工智能,深度学习,遥感)