pytorch列优先(fortran-like)reshape的实现与性能

背景

numpy 中的reshape函数包含一个order变量,默认order='C',即在变形中以前面的维度(行)为优先顺序重新排列元素,而order='F'时以后面的维度(列)为优先顺序重新排列元素,官方文档中给出了示例:

>>> np.reshape(a, (2, 3)) # C-like index ordering
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape
array([[0, 1, 2],
 [3, 4, 5]])
>>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering
array([[0, 4, 3],
 [2, 1, 5]])
>>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F')
array([[0, 4, 3],
 [2, 1, 5]])

pytorch解决方案

pytorch中,torch.reshape()函数只接受矩阵和形状两个参数,采用了行优先(C-Style)的变换方式,如果需要使用列优先的变换,需要借助permute()函数,stackoverflow上给出了解决方案

def reshape_fortran(x, shape):
    if len(x.shape) > 0:
        x = x.permute(*reversed(range(len(x.shape))))
    return x.reshape(*reversed(shape)).permute(*reversed(range(len(shape))))

性能测试

但是上面的作者怀疑permute()函数内部仍然会创建张量的副本,影响效率。因此笔者对这种方法做了测试,并与numpy的内置函数做了对比。测试环境为i9-10900X/RTX2080Ti。

测试代码:

import numpy as np
import torch
import time

dim1 = 40
dim2 = 50
dim3 = 5

def reshape_fortran(x, shape):
    if len(x.shape) > 0:
        x = x.permute(*reversed(range(len(x.shape))))
    return x.reshape(*reversed(shape)).permute(*reversed(range(len(shape))))

torch.cuda.set_device(0)
device = torch.device('cuda')

x = [torch.from_numpy(np.random.rand(dim1, dim2)).to(device) for _ in range(100)]
xx = [torch.from_numpy(np.random.rand(dim1, dim2)).to(device) for _ in range(100)]
for i in range(100):
    y = x[i].reshape([dim2, dim1])
# c reshape
t0 = time.time()
for i in range(100):
    y = xx[i].reshape([dim2, dim3, -1])
t1 = time.time()

# fortran reshape
for i in range(100):
    yy = reshape_fortran(xx[i], [dim2, dim3, -1])
t2 = time.time()

print(f'torch build-in reshape: {(t1 - t0)/100} s')
print(f'torch permute reshape: {(t2 - t1)/100} s')

x = [np.random.rand(dim1, dim2) for _ in range(100)]
xx = [np.random.rand(dim1, dim2) for _ in range(100)]
for i in range(100):
    y = x[i].reshape([dim2, dim3, -1])
t0 = time.time()
for i in range(100):
    yy = xx[i].reshape([dim2, dim3, -1])
t1 = time.time()
for i in range(100):
    yyy = xx[i].reshape([dim2, dim3, -1], order='F')
t2 = time.time()

print(f'numpy C reshape: {(t1 - t0)/100} s')
print(f'numpy F reshape: {(t2 - t1)/100} s')

测试结果:

torch build-in reshape: 9.72747802734375e-07 s
torch permute reshape: 1.1897087097167968e-05 s
numpy C reshape: 3.0517578125e-07 s
numpy F reshape: 2.474784851074219e-06 s

测试中pytorch中基于permute()的方法的耗时是内置行优先reshape()函数的10倍,但是在numpy的测试中,列优先变换的耗时也是行优先的10倍。因此可以认为在pytorch中,基于permute()函数的变换计算效率很高,不需要继续优化。

参考文献

numpy文档

stackoverflow原问题

你可能感兴趣的:(pytorch列优先(fortran-like)reshape的实现与性能)