手撸golang etcd raft协议之3

手撸golang etcd raft协议之3

缘起

最近阅读 [云原生分布式存储基石:etcd深入解析] (杜军 , 2019.1)
本系列笔记拟采用golang练习之
gitee: https://gitee.com/ioly/learning.gooop

raft分布式一致性算法

分布式存储系统通常会通过维护多个副本来进行容错,
以提高系统的可用性。
这就引出了分布式存储系统的核心问题——如何保证多个副本的一致性?

Raft算法把问题分解成了领袖选举(leader election)、
日志复制(log replication)、安全性(safety)
和成员关系变化(membership changes)这几个子问题。

Raft算法的基本操作只需2种RPC即可完成。
RequestVote RPC是在选举过程中通过旧的Leader触发的,
AppendEntries RPC是领导人触发的,目的是向其他节点复制日志条目和发送心跳(heartbeat)。

目标

  • 根据raft协议,实现高可用分布式强一致的kv存储

子目标(Day 3)

  • 继续完善raft状态机之Follower状态的处理逻辑
  • 继续完善raft状态机之Candidate状态的处理逻辑

设计

  • tFollowerState:

    • 监视Leader心跳是否超时
    • 如果Leader心跳超时,则切换到Candidate状态,竞选新leader
    • 添加RequestVote和AppendEntries两个RPC接口的响应
  • tCandidateState:

    • 进入此状态,立即向其他节点发起竞选请求
    • 如竞选超时,则重新发起竞选
    • 如收到新Leader心跳,则切换回Follower
    • 如收到N/2+1张票,则切换到Leader,并广播之

tFollowerState.go

继续完善raft状态机之Follower状态的处理逻辑

package lsm

import (
    "learning/gooop/etcd/raft/config"
    "learning/gooop/etcd/raft/roles"
    "learning/gooop/etcd/raft/rpc"
    "learning/gooop/etcd/raft/timeout"
    "sync"
    "time"
)

type tFollowerState struct {
    tRaftStateBase

    mInitOnce  sync.Once
    mStartOnce sync.Once

    mVotedLeaderID string
    mLeaderHeartbeatClock int64
    mStateChangedHandler StateChangedHandleFunc
    mEventMap  map[tFollowerEvent][]tFollowerEventHandler
}


type JobFunc func()

type tFollowerEvent int
const (
    evFollowerStart tFollowerEvent = iota
    evFollowerLeaderHeartbeatTimeout tFollowerEvent = iota
)

type tFollowerEventHandler func(e tFollowerEvent, args ...interface{})

func newFollowerState(term int, cfg config.IRaftConfig, handler StateChangedHandleFunc) IRaftState {
    it := new(tFollowerState)
    it.init(term, cfg, handler)

    return it
}

func (me *tFollowerState) init(term int, cfg config.IRaftConfig, handler StateChangedHandleFunc) {
    me.mInitOnce.Do(func() {
        me.tRaftStateBase = *newRaftStateBase(term, cfg)
        me.role = roles.Follower
        me.mStateChangedHandler = handler

        // init event map
        me.mEventMap = make(map[tFollowerEvent][]tFollowerEventHandler)
        me.registerEventHandlers()
    })
}

func (me *tFollowerState) raise(e tFollowerEvent, args ...interface{}) {
    if handlers, ok := me.mEventMap[e]; ok {
        for _, it := range handlers {
            it(e, args...)
        }
    }
}

func (me *tFollowerState) registerEventHandlers() {
    me.mEventMap[evFollowerStart] = []tFollowerEventHandler{
        me.whenStartThenBeginWatchLeaderTimeout,
    }
    me.mEventMap[evFollowerLeaderHeartbeatTimeout] = []tFollowerEventHandler {
        me.whenLeaderHeartbeatTimeoutThenSwitchToCandidateState,
    }
}


func (me *tFollowerState) Start() {
    me.mStartOnce.Do(func() {
        me.raise(evFollowerStart)
    })
}

func (me *tFollowerState) whenStartThenBeginWatchLeaderTimeout(e tFollowerEvent, args... interface{}) {
    go func() {
        iCheckingTimeoutInterval := timeout.HeartbeatTimeout / 3
        iHeartbeatTimeoutNanos := int64(timeout.HeartbeatTimeout / time.Nanosecond)
        for range time.Tick(iCheckingTimeoutInterval) {
            now := time.Now().UnixNano()
            if now - me.mLeaderHeartbeatClock >= iHeartbeatTimeoutNanos {
                me.raise(evFollowerLeaderHeartbeatTimeout)
                return
            }
        }
    }()
}


func (me *tFollowerState) whenLeaderHeartbeatTimeoutThenSwitchToCandidateState(_ tFollowerEvent, args... interface{}) {
    fn := me.mStateChangedHandler
    if fn == nil {
        return
    }

    state := newCandidateState(me.cfg, me.term, me.mStateChangedHandler)
    fn(state)
}

func (me *tFollowerState) Role() roles.RaftRole {
    return roles.Follower
}

func (me *tFollowerState) RequestVote(cmd *rpc.RequestVoteCmd, ret *rpc.RequestVoteRet) error {
    if cmd.Term <= me.term {
        ret.Term = me.term
        ret.VoteGranted = false
        return nil
    }

    if me.mVotedLeaderID != "" && me.mVotedLeaderID != cmd.CandidateID {
        ret.Term = me.term
        ret.VoteGranted = false
        return nil
    }

    me.mVotedLeaderID = cmd.CandidateID
    ret.Term = cmd.Term
    ret.VoteGranted = true
    return nil
}

func (me *tFollowerState) AppendEntries(cmd *rpc.AppendEntriesCmd, ret *rpc.AppendEntriesRet) error {
    if cmd.Term < me.term {
        ret.Term = me.term
        ret.Success = false
        return nil
    }

    me.term = cmd.Term
    me.leaderID = cmd.LeaderID
    me.mLeaderHeartbeatClock = time.Now().UnixNano()

    if len(cmd.Entries) <= 0 {
        // just heartbeat package
        ret.Term = cmd.Term
        ret.Success = true
        return nil
    }

    // todo: append logs
    return nil
}


func (me *tFollowerState) StateChangedHandler(handler StateChangedHandleFunc) {
    me.mStateChangedHandler = handler
}

tCandidateState.go

继续完善raft状态机之Candidate状态的处理逻辑

package lsm

import (
    "errors"
    "learning/gooop/etcd/raft/config"
    "learning/gooop/etcd/raft/rpc"
    "sync"
)

type tCandidateState struct {
    tRaftStateBase

    mInitOnce  sync.Once
    mStartOnce sync.Once

    mStateChangedHandler StateChangedHandleFunc
    mEventMap  map[tCandidateEvent][]tCandidateEventHandler
}


func (me *tCandidateState) RequestVote(cmd *rpc.RequestVoteCmd, ret *rpc.RequestVoteRet) error {
    return gErrorCandidateWontReplyRequestVote
}

func (me *tCandidateState) AppendEntries(cmd *rpc.AppendEntriesCmd, ret *rpc.AppendEntriesRet) error {
    return gErrorCandidateWontReplyAppendEntries
}

func (me *tCandidateState) StateChangedHandler(handler StateChangedHandleFunc) {
    me.mStateChangedHandler = handler
}

type tCandidateEvent int
const (
    evCandidateStart tCandidateEvent = iota
    evCandidateElectionTimeout tCandidateEvent = iota
    evCandidateGotEnoughVotes tCandidateEvent = iota
)

type tCandidateEventHandler func(e tCandidateEvent, args ...interface{})

func newCandidateState(cfg config.IRaftConfig, term int, handler StateChangedHandleFunc) IRaftState {
    it := new(tCandidateState)
    it.init(cfg, term, handler)
    return it
}


func (me *tCandidateState) init(cfg config.IRaftConfig, term int, handler StateChangedHandleFunc) {
    me.mInitOnce.Do(func() {
        me.cfg = cfg
        me.term = term
        me.mStateChangedHandler = handler

        // init event map
        me.mEventMap = make(map[tCandidateEvent][]tCandidateEventHandler)
        me.registerEventHandlers()
    })
}


func (me *tCandidateState) registerEventHandlers() {
    me.mEventMap[evCandidateStart] = []tCandidateEventHandler{
        me.whenStartThenRequestVote,
        me.whenStartThenWatchElectionTimeout,
    }

    me.mEventMap[evCandidateElectionTimeout] = []tCandidateEventHandler{
        me.whenElectionTimeoutThenRequestVoteAgain,
    }

    me.mEventMap[evCandidateGotEnoughVotes] = []tCandidateEventHandler{
        me.whenGotEnoughVotesThenSwitchToLeader,
    }
}

func (me *tCandidateState) raise(e tCandidateEvent, args ...interface{}) {
    if handlers, ok := me.mEventMap[e]; ok {
        for _, it := range handlers {
            it(e, args...)
        }
    }
}

func (me *tCandidateState) Start() {
    me.mStartOnce.Do(func() {
        me.raise(evCandidateStart)
    })
}

func (me *tCandidateState) whenStartThenRequestVote(_ tCandidateEvent, _... interface{}) {
    // todo: fixme
    panic("implements me")
}

func (me *tCandidateState) whenStartThenWatchElectionTimeout(_ tCandidateEvent, _... interface{}) {
    // todo: fixme
    panic("implements me")
}

func (me *tCandidateState) whenElectionTimeoutThenRequestVoteAgain(_ tCandidateEvent, _... interface{}) {
    // todo: fixme
    panic("implements me")
}

func (me *tCandidateState) whenGotEnoughVotesThenSwitchToLeader(_ tCandidateEvent, _... interface{}) {
    // todo: fixme
    panic("implements me")
}

var gErrorCandidateWontReplyRequestVote = errors.New("candidate won't reply RequestVote RPC")
var gErrorCandidateWontReplyAppendEntries = errors.New("candidate won't reply AppendEntries RPC")

(未完待续)

你可能感兴趣的:(手撸golang etcd raft协议之3)