- 求是网:“内卷式”竞争的突出表现和主要危害有哪些?
加百力
财经研究科技知识人工智能大数据
"内卷式"竞争主要表现为:企业层面的低价竞争、同质化竞争和营销"逐底竞争";地方政府层面的违规优惠政策、盲目重复建设和设置市场壁垒。危害体现在三个层面:微观上导致"劣币驱逐良币",损害消费者利益;中观上破坏行业生态,挤压产业链利润空间;宏观上扭曲资源配置,抑制创新活力。什么是“内卷式”竞争?概括其一般特征,是指经济主体为了维持市场地位或争夺有限市场,不断投入大量精力和资源,却没有带来整体收益增长的
- AI 图像编辑提示词参考之:背景替换
在AI图像编辑中(以FluxKontext为例),“替换背景”(BackgroundReplacement)是提升图像表现力的关键手段之一。但背景更换不仅仅是简单的视觉置换,更重要的是:确保人物主体外观不变,并与新背景在色温、色调、光影等方面自然融合。只有这样,最终图像才会呈现出“原本拍摄于该背景环境”的真实感。建议使用以下结构组织提示词:Replacethebackgroundwith[新背景]
- 数据分析常用指标名词解释及计算公式
走过冬季
学习笔记数据分析大数据
数据分析中有大量常用指标,它们帮助我们量化业务表现、用户行为、产品健康度等。下面是一些核心指标的名词解释及计算方式,按常见类别分类:一、流量与用户规模指标页面浏览量名词解释:用户访问网站或应用时,每次加载或刷新一个页面就算一次PV。它衡量的是页面被打开的总次数。计算方式:PV=∑(所有页面被加载的次数)(通常由埋点或日志直接统计)独立访客数名词解释:在特定时间范围内(如一天、一周、一月),访问网站
- Ollama平台里最流行的embedding模型: nomic-embed-text 模型介绍和实践
skywalk8163
人工智能embedding人工智能服务器
nomic-embed-text模型介绍nomic-embed-text是一个基于SentenceTransformers库的句子嵌入模型,专门用于特征提取和句子相似度计算。该模型在多个任务上表现出色,特别是在分类、检索和聚类任务中。其核心优势在于能够生成高质量的句子嵌入,这些嵌入在语义上非常接近,从而在相似度计算和分类任务中表现优异。之所以选用这个模型,是因为在Ollama网站查找这个模型,发现
- Mysql字段没有索引,通过where x = 3 for update是使用什么级别的锁
没有索引时,FORUPDATE会锁住整个表现在,你正在一本一本地翻看所有书,寻找“维修中”的书,并且你对管理员说:“在我清点和修改完之前,别人不能动这些书,也不能往这个范围里加新书!”问题1:如何锁住你找到的“维修中”的书?你每找到一本“维修中”的书,就给它贴上一个“正在处理,请勿触碰”的标签(行级排他锁)。问题2:如何防止别人“往这个范围里加新书”?这是最关键的。因为你没有“状态”的目录卡片(没
- AI技术正在深刻重塑A/B测试优化的流程、效率和价值,推动其从传统的“手动实验”向“智能优化引擎”跃迁。
zzywxc787
人工智能
AI技术正在深刻重塑A/B测试优化的流程、效率和价值,推动其从传统的“手动实验”向“智能优化引擎”跃迁。以下是具体变革方向及实际影响:1.实验设计智能化:告别“猜猜看”传统痛点:依赖经验选择测试变量(如按钮颜色、文案),忽略潜在高价值组合。AI解决方案:多臂老虎机算法(MAB):动态分配流量至表现最优的变体(如:80%流量给当前最优,20%探索新选项),减少流量浪费高达70%(Netflix案例)
- 万卷书 - 自律就是自由 Discipline Equals Freedom
夜流冰
付费专栏其他
自律就是自由实战手册作者:JockoWillink简介《自律就是自由》(2020年)是一本关于自律艺术的实战手册。它揭示了你需要做什么来满足你的全部潜能--以及为什么自律能让你自由。本书适用于谁?*寻找新方法的健身爱好者*喜欢心直口快拥有严厉的爱的人*任何寻求灵感以更努力工作的人关于作者乔科-威林克曾在海豹突击队服役20年,并在伊拉克完成了几次服役。回国后,威林克成为一名海豹突击队教官,并创立了E
- YOLOv11 技术详解:架构优化与性能提升
代码老y
YOLO架构目标跟踪
YOLOv11是目标检测领域中一个备受瞩目的新版本,它在保持实时性的同时,显著提升了检测的准确性和效率。本文将深入探讨YOLOv11的架构改进、性能优化以及它在不同应用场景中的表现。一、架构改进(一)C3K2块YOLOv11引入了C3K2块,这是对之前版本中CSP(CrossStagePartial)块的增强。C3K2块使用不同的核大小(例如3x3或5x5)和通道分离策略来优化更复杂特征的提取。这
- 【前端】【Echarts】【Liquidfill 水球图】深入理解 ECharts Liquidfill 水球图:从入门到进阶
患得患失949
Echarts学习数据大屏前端echartsjavascript
效果深入理解EChartsLiquidfill水球图:从入门到进阶在可视化数据展示中,水球图(Liquidfill)是一种极具表现力的图表。它形象地用“水位高低”表示某个百分比或完成度,非常适合展示指标进度、占比、加载状态等。本文将结合实际HTML示例,带你全面掌握如何使用ECharts+echarts-liquidfill插件绘制水球图,并通过多个实例逐步讲解配置技巧。准备工作在HTML中使用水
- 跨越十年的C++演进:C++20新特性全解析
十年编程老舅
C++Linux后端c++c++20c++新特性c++11c++14c++17c++23
跨越十年的C++演进系列,分为5篇,本文为第四篇,后续会持续更新C++23~前3篇如下:跨越十年的C++演进:C++11新特性全解析跨越十年的C++演进:C++14新特性全解析跨越十年的C++演进:C++17新特性全解析C++20标准是C++语言的第四个正式标准,于2020年12月正式发布。首先先上C++20特性思维导图:接下来将从关键字、语法、宏、属性、弃用这5个类目来讲解~1、关键字1.1、c
- 【深度学习解惑】在实践中如何发现和修正RNN训练过程中的数值不稳定?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn人工智能tensorflowpytorch神经网络机器学习
在实践中发现和修正RNN训练过程中的数值不稳定目录引言与背景介绍原理解释代码说明与实现应用场景与案例分析实验设计与结果分析性能分析与技术对比常见问题与解决方案创新性与差异性说明局限性与挑战未来建议和进一步研究扩展阅读与资源推荐图示与交互性内容语言风格与通俗化表达互动交流1.引言与背景介绍循环神经网络(RNN)在处理序列数据时表现出色,但训练过程中常面临梯度消失和梯度爆炸问题,导致数值不稳定。当网络
- 【深度学习实战】当前三个最佳图像分类模型的代码详解
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习人工智能分类模型机器学习TransformerEfficientNetConvNeXt
下面给出三个在当前图像分类任务中精度表现突出的模型示例,分别基于SwinTransformer、EfficientNet与ConvNeXt。每个模型均包含:训练代码(使用PyTorch)从预训练权重开始微调(也可注释掉预训练选项,从头训练)数据集目录结构:└──dataset_root├──buy#第一类图像└──nobuy#第二类图像随机拆分:80%训练,20%验证每个Epoch输出一次loss
- PCL改进的体素滤波器
代码探险狂人
PCL
体素滤波是一种常用的点云数据处理方法,可以用于去除噪声、平滑点云数据以及进行体素化等操作。PCL(点云库)是一个广泛使用的开源库,提供了丰富的点云处理算法和工具。在本文中,我们将介绍如何改进PCL的体素滤波器,并提供相应的源代码。体素滤波器是一种基于体素网格的滤波方法,它将点云数据划分为规则的体素网格,并对每个体素内的点进行处理。传统的体素滤波器在去除噪声和平滑数据方面表现良好,但在一些特定场景下
- 二、基础-python基础编程[基础语法、控制语句、数据类型]
HongXu_CaiYi
python相关python开发语言
目录体系划分基础语法注释&帮助变量&数据类型&类型转换变量数据类型类型转换运算符输入&输出控制台输入输出控制【分支if、循环while|for、pass】分支控制if循环控制while循环控制forpass语句数据类型操作数值类型表现形式进制转换常用操作布尔类型字符串类型使用与分类常用操作连接切片查找计算类转换类填充压缩分割拼接判定列表类型概念&定义常用操作迭代器补充元组概念与定义常用操作字典概念
- Java面向对象程序设计三大支柱--多态
打代码的小熊饼干
eclipsegithubjava
面向对象程序设计的三大支柱是封装、继承和多态。本篇文章主要讲述多态的相关知识。一、概述1.定义多态意味着父类的变化可以指向子类对象;它是同一行为具有不同表现形式或形态的能力。ps:一个类实际定义了一种类型。子类定义的类型称为子类型;父类定义的类型称为父类型。2.要实现多态需要满足一下几个条件:有继承关系有方法重写(抽象方法)有父类引用指向子类对象3.多态的优点消除类型之间的耦合关系可替换性可扩充性
- 街道垃圾识别难?陌讯视觉算法实测准确率突破95%
2501_92487900
算法边缘计算目标检测视觉检测计算机视觉
开篇痛点:街道垃圾识别的技术挑战在智慧城市和环保监管场景中,街道垃圾的实时检测一直是个难题。传统视觉算法(如YOLOv5、FasterR-CNN)在复杂街道场景下表现不佳,主要面临以下问题:光照干扰:早晚光线变化导致误检(如阴影被识别为垃圾)小目标漏检:饮料瓶、烟头等小物体在640x640输入下仅占10x10像素遮挡问题:垃圾桶周边堆积物造成特征混淆某环保科技公司实测数据显示,开源模型在真实场景中
- 学习如何有效管理YashanDB数据库数据
数据库
在数据库管理过程中,优化数据的管理和访问效率是一个关键问题。特别是在大规模数据管理的环境中,如何保证数据的完整性、高可用性以及查询性能,直接影响到系统的整体表现和业务的有效性。因此,深入理解YashanDB数据库的管理特点和有效的数据操作模式,对于提升数据库性能,确保数据安全至关重要。YashanDB的核心架构YashanDB支持三种部署方式:单机部署、分布式部署和共享集群部署。每种部署具有不同的
- 深入理解跨站请求伪造(CSRF):原理、危害与防御
weixin_47233946
信息安全csrf网络前端
引言跨站请求伪造(Cross-SiteRequestForgery,CSRF)是一种常见的Web安全漏洞,攻击者通过伪装用户身份执行非授权操作。根据OWASP(开放网络应用安全项目)的统计,CSRF曾多次入选十大Web安全威胁。本文将深入剖析CSRF的工作原理、潜在危害及防御策略。一、CSRF攻击原理1.1核心机制CSRF利用用户在目标网站(如银行网站)的已认证会话,诱骗其在不知情时发起恶意请求。
- 微软刚发布的Copilot+PC为什么让Intel和AMD尴尬?2024 AI PC元年——产业布局及前景展望
高性能服务器
microsoftcopilot人工智能AIPCPC集群
美国东部时间5月20日在微软位于华盛顿的新园区举行的发布会上,宣布将旗下AI助手Copilot全面融入Windows系统,能够在不调用云数据中心的情况下处理更多人工智能任务。“将世界作为一个提示词就从Windows系统开始”。微软的新PC将是“Copilot+PC”,是“有史以来速度最快、最适合AI的PC”。Copilot+PC十大亮点一:Copilot+PC的核心是人工智能Copilot+PC围
- Python 强化学习算法实用指南(二)
原文:annas-archive.org/md5/e3819a6747796b03b9288831f4e2b00c译者:飞龙协议:CCBY-NC-SA4.0第六章:学习随机优化与PG优化到目前为止,我们已经探讨并开发了基于价值的强化学习算法。这些算法通过学习一个价值函数来找到一个好的策略。尽管它们表现良好,但它们的应用受限于一些内在的限制。在本章中,我们将介绍一类新的算法——策略梯度方法,它们通过
- 达摩院发布2022十大科技趋势!俺是一个也看不懂鸭!
xhmj12
人工智能网络大数据机器学习编程语言
上一篇:MVVM已过时?MVVM升级版:MVI架构来了来源|达摩院/阿里技术 小伙伴们大家好。2021年12月28日,阿里巴巴达摩院发布了2022年的十大科技趋势预测(https://damo.alibaba.com/techtrends/2022),作为一个打工人,俺也第一时间追了一波。虽说很多都看不懂,但是我想着多了解了解趋势和方向总是好的,所以咱们这里也分享一波。这次应该是达摩院连续第四年发
- 95%程序员不知道的JVM调优技巧:让GC时间从2秒降到50ms的实战案例
小筱在线
jvm测试工具
前言:为什么JVM调优如此重要?在现代Java应用开发中,JVM调优是提升应用性能的关键环节。一个经过精心调优的JVM可以显著减少垃圾回收(GC)停顿时间,提高吞吐量,从而为用户提供更流畅的体验。本文将分享一个真实案例,展示如何通过系统化的调优方法,将GC时间从2秒降低到50ms,提升近40倍的性能表现。第一章:理解JVM内存结构与GC机制1.1JVM内存结构详解(JDK1.8)Java虚拟机内存
- Split Lock(拆分锁)内核机制
Yana.com
Linux系统运维java开发语言
目录**一.什么是SplitLock?****1.原子操作:像“不可打断的快递签收”****2.SplitLock(拆分锁):违规的“拆包行为”****3.为什么会导致系统夯死?****4.触发原因****二.日志分析****当服务器真正触发SplitLockDetection时的表现****1.内核态(Kernel-Space)触发拆分锁****2.用户态(User-Space)触发拆分锁**三
- Python 网络爬虫中 robots 协议使用的常见问题及解决方法
在Python网络爬虫开发中,robots协议的正确应用是保证爬虫合规性的关键。然而,在实际使用过程中,开发者常会遇到各种问题,若处理不当,可能导致爬虫被封禁或引发法律风险。本文将梳理robots协议使用中的常见问题,并提供针对性的解决方法。一、协议解析不准确导致的合规性问题1.1误读User-agent通配符范围问题表现:将User-agent:*错误理解为适用于所有场景,忽略了特定爬虫的单独规
- 【RAG实战指南 Day 13】嵌入模型选择与性能对比
在未来等你
Java场景面试宝典RAG嵌入模型语义搜索信息检索向量数据库
【RAG实战指南Day13】嵌入模型选择与性能对比文章内容开篇欢迎来到"RAG实战指南"系列的第13天!今天我们聚焦RAG系统中的关键组件——嵌入模型。嵌入模型的质量直接影响检索效果,进而决定整个RAG系统的性能。在信息检索过程中,嵌入模型将文本转换为向量表示,其质量决定了语义搜索的准确性和召回率。本文将深入分析主流嵌入模型的技术特点、性能表现和适用场景,帮助您在项目中做出最优选择。通过本文,您将
- 代码质量-圈复杂度及其计算
damon2636
圈复杂度(CyclomaticComplexity)是一种代码复杂度的衡量标准。它可以用来衡量一个模块判定结构的复杂程度,数量上表现为独立现行路径条数,也可理解为覆盖所有的可能情况最少使用的测试用例数。圈复杂度大说明程序代码的判断逻辑复杂,可能质量低且难于测试和维护。程序的可能错误和高的圈复杂度有着很大关系。下面这个实例中,单元测试的覆盖率可以达到100%,但是很容易发现这其中已经漏掉了一个NPE
- 大模型的“涌现能力“:现象、表现与成因解析
北辰alk
AI深度学习人工智能
文章目录一、涌现能力的本质与特征1.1基本定义1.2识别标准二、三种典型涌现能力表现2.1少样本上下文学习(Few-shotIn-contextLearning)表现特征实证数据可能成因2.2思维链推理(Chain-of-ThoughtReasoning)表现特征典型案例可能成因2.3指令跟随(InstructionFollowing)表现特征能力对比可能成因三、涌现能力的理论解释3.1相变理论视
- MQTT与HTTP在物联网中的比较:为什么MQTT是更好的选择
在物联网(IoT)应用中,选择合适的通信协议是实现高效、可靠数据传输的关键。HTTP和MQTT是两种常见的协议,但它们在物联网场景中的表现却有显著差异。本文将比较这两种协议,并解释为什么MQTT在物联网应用中是更好的选择。一、HTTP与MQTT的基本概念HTTP(HyperTextTransferProtocol):HTTP是一种无状态的应用层协议,广泛应用于万维网(WWW)。它基于请求/响应模型
- Redis核心用法与通用命令全解析
Pota-to成长日记
Redisredis数据库缓存
Redis核心用法与通用命令全解析——从基础操作到高效实践一、Redis基础知识速览Redis是一款高性能的键值存储系统,支持String、Hash、List、Set、SortedSet五种核心数据结构,以及Bitmaps、HyperLogLog、Streams等扩展类型。其单线程模型和内存存储特性使其在缓存、计数器、消息队列等场景中表现出色。二、核心命令详解(附实用示例)1.通用键操作命令(1)
- Python 机器学习核心入门与实战进阶 Day 8 - 数据建模与分析项目实战预备:项目规划与需求拆解
蓝婷儿
pythonpython机器学习开发语言
✅今日目标理解数据分析/建模项目的一般流程练习项目需求理解与目标拆解明确后续模型评估指标与预期交付成果起草项目计划文档(可选写为Markdown)一、项目背景与题目建议(可选方向)项目名称简介学生成绩预测分析系统根据历史表现预测成绩是否达标、学科薄弱点等求职者简历筛选模型根据简历信息预测是否通过初筛电商用户购买预测系统分析用户行为数据预测是否购买公司销售数据趋势分析可视化+聚合分析:月销售趋势、区
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite