背景
最近有接触netty相关内容,也正好组内有做关于netty时间轮的分享,正好总结这篇文章,做个了解和记录。时间轮在超时控制,异常处理,锁控制等方面都有非常多的应用。本期要说的netty时间轮是实现相对简单的一种,比较复杂的如kafka
是多级的时间轮实现,我们暂不做介绍。
原理
首先我们理解什么是时间轮,其实可以形象的看做是一个手表,按照固定的时间,即tick
,每次摆动对应一个阶段的时间,然后对应时间刻度上绑定待触发任务。当时钟指针到达时,对应的任务就可以执行了。比如一种场景,每一个刻度代表一秒,某个超时判断为10s,则这个超时就在10s的刻度上(假定时钟一个周期大于10s,即格子数大于10个)。当指针从0到达10s的刻度,就是该超时判断执行的时候。
以上是个简单时间轮的原理,实用的时间轮比之要复杂。
思路参考
关于时间轮的实现,基本都基于George Varghese
和Tony Lauck
的论文,后面有链接。netty的时间轮处理除了上面的原理,还在每个调度任务中记录轮次,在轮次减少到0后,再判断当前轮上的剩余格数,进行任务执行。
注意使用的netty版本是
4.1.51.Final
netty实现代码
- 时间轮构造
public HashedWheelTimer(
ThreadFactory threadFactory,
long tickDuration, TimeUnit unit, int ticksPerWheel, boolean leakDetection) {
this(threadFactory, tickDuration, unit, ticksPerWheel, leakDetection, -1);
}
public HashedWheelTimer(
ThreadFactory threadFactory,
long tickDuration, TimeUnit unit, int ticksPerWheel, boolean leakDetection,
long maxPendingTimeouts) {
if (threadFactory == null) {
throw new NullPointerException("threadFactory");
}
if (unit == null) {
throw new NullPointerException("unit");
}
if (tickDuration <= 0) {
throw new IllegalArgumentException("tickDuration must be greater than 0: " + tickDuration);
}
if (ticksPerWheel <= 0) {
throw new IllegalArgumentException("ticksPerWheel must be greater than 0: " + ticksPerWheel);
}
// Normalize ticksPerWheel to power of two and initialize the wheel.
wheel = createWheel(ticksPerWheel);
mask = wheel.length - 1;
// Convert tickDuration to nanos.
long duration = unit.toNanos(tickDuration);
// Prevent overflow.
if (duration >= Long.MAX_VALUE / wheel.length) {
throw new IllegalArgumentException(String.format(
"tickDuration: %d (expected: 0 < tickDuration in nanos < %d",
tickDuration, Long.MAX_VALUE / wheel.length));
}
if (duration < MILLISECOND_NANOS) {
if (logger.isWarnEnabled()) {
logger.warn("Configured tickDuration %d smaller then %d, using 1ms.",
tickDuration, MILLISECOND_NANOS);
}
this.tickDuration = MILLISECOND_NANOS;
} else {
this.tickDuration = duration;
}
//创建调度线程
workerThread = threadFactory.newThread(worker);
leak = leakDetection || !workerThread.isDaemon() ? leakDetector.track(this) : null;
this.maxPendingTimeouts = maxPendingTimeouts;
if (INSTANCE_COUNTER.incrementAndGet() > INSTANCE_COUNT_LIMIT &&
WARNED_TOO_MANY_INSTANCES.compareAndSet(false, true)) {
reportTooManyInstances();
}
}
除了一些参数校验,我们按照顺序,先看主要的方法createWheel
,按照时间轮每圈的格子数,先做个转换normalizeTicksPerWheel()
,找到最近的一个二进制数值,如7取8,13取16。这么做主要是通过利用&
运算可以快速取余,用到了后面的定义的mask= wheel.length-1
。这种方式在HashMap以及一些中间件中经常使用。随后,根据新的每圈格子数,创建对应的拉链数组。继续看构造函数,会创建一个worker线程,用来遍历时间轮,执行调度。
private static HashedWheelBucket[] createWheel(int ticksPerWheel) {
if (ticksPerWheel <= 0) {
throw new IllegalArgumentException(
"ticksPerWheel must be greater than 0: " + ticksPerWheel);
}
if (ticksPerWheel > 1073741824) {
throw new IllegalArgumentException(
"ticksPerWheel may not be greater than 2^30: " + ticksPerWheel);
}
ticksPerWheel = normalizeTicksPerWheel(ticksPerWheel);
HashedWheelBucket[] wheel = new HashedWheelBucket[ticksPerWheel];
for (int i = 0; i < wheel.length; i ++) {
wheel[i] = new HashedWheelBucket();
}
return wheel;
}
private static int normalizeTicksPerWheel(int ticksPerWheel) {
int normalizedTicksPerWheel = 1;
while (normalizedTicksPerWheel < ticksPerWheel) {
normalizedTicksPerWheel <<= 1;
}
return normalizedTicksPerWheel;
}
- worker线程
worker线程我们主要看下run方法。获得当前tick的一个过期时间,然后取余得到当前tick的分桶,然后,指定的bucket再判断当前tick的截止时间,判断轮次是否截止+是否取消,是否得处于过期timeout.deadline <= deadline
。具体可以看io.netty.util.HashedWheelTimer.HashedWheelBucket.expireTimeouts
private final class Worker implements Runnable {
private final Set unprocessedTimeouts = new HashSet();
private long tick;
@Override
public void run() {
// Initialize the startTime.
startTime = System.nanoTime();
if (startTime == 0) {
// We use 0 as an indicator for the uninitialized value here, so make sure it's not 0 when initialized.
startTime = 1;
}
// Notify the other threads waiting for the initialization at start().
startTimeInitialized.countDown();
do {
final long deadline = waitForNextTick();
if (deadline > 0) {
int idx = (int) (tick & mask);
processCancelledTasks();
HashedWheelBucket bucket =
wheel[idx];
transferTimeoutsToBuckets();
bucket.expireTimeouts(deadline);
tick++;
}
} while (WORKER_STATE_UPDATER.get(HashedWheelTimer.this) == WORKER_STATE_STARTED);
// Fill the unprocessedTimeouts so we can return them from stop() method.
for (HashedWheelBucket bucket: wheel) {
bucket.clearTimeouts(unprocessedTimeouts);
}
for (;;) {
HashedWheelTimeout timeout = timeouts.poll();
if (timeout == null) {
break;
}
if (!timeout.isCancelled()) {
unprocessedTimeouts.add(timeout);
}
}
processCancelledTasks();
}
- 时间轮每个格子对应的分桶
如下,对应到时间轮每个格子,其中的元素是实际调度任务,构造了一个双向链表的结构。其中expireTimeouts
,即上面介绍的当指定的tick
到来时,判断并执行分桶上的调度任务。
private static final class HashedWheelBucket {
// Used for the linked-list datastructure
private HashedWheelTimeout head;
private HashedWheelTimeout tail;
/**
* Add {@link HashedWheelTimeout} to this bucket.
*/
public void addTimeout(HashedWheelTimeout timeout) {
assert timeout.bucket == null;
timeout.bucket = this;
if (head == null) {
head = tail = timeout;
} else {
tail.next = timeout;
timeout.prev = tail;
tail = timeout;
}
}
/**
* Expire all {@link HashedWheelTimeout}s for the given {@code deadline}.
*/
public void expireTimeouts(long deadline) {
HashedWheelTimeout timeout = head;
// process all timeouts
while (timeout != null) {
HashedWheelTimeout next = timeout.next;
if (timeout.remainingRounds <= 0) {
next = remove(timeout);
if (timeout.deadline <= deadline) {
timeout.expire();
} else {
// The timeout was placed into a wrong slot. This should never happen.
throw new IllegalStateException(String.format(
"timeout.deadline (%d) > deadline (%d)", timeout.deadline, deadline));
}
} else if (timeout.isCancelled()) {
next = remove(timeout);
} else {
timeout.remainingRounds --;
}
timeout = next;
}
}
- 实际调度任务元素
下面是实际执行的调度任务元素,它实现了javaTimeout
接口,元素包括对时间轮的索引,调度任务,本身的截止时间,以及状态,轮次,分桶和前后链表指针等。除了cancel
,remove
等方法,核心的是expire()
用来真正实现任务的调度。每个有自己对应的deadline
,即预计调度的时间点。
private static final class HashedWheelTimeout implements Timeout {
private static final int ST_INIT = 0;
private static final int ST_CANCELLED = 1;
private static final int ST_EXPIRED = 2;
private static final AtomicIntegerFieldUpdater STATE_UPDATER =
AtomicIntegerFieldUpdater.newUpdater(HashedWheelTimeout.class, "state");
private final HashedWheelTimer timer;
private final TimerTask task;
private final long deadline;
@SuppressWarnings({"unused", "FieldMayBeFinal", "RedundantFieldInitialization" })
private volatile int state = ST_INIT;
// remainingRounds will be calculated and set by Worker.transferTimeoutsToBuckets() before the
// HashedWheelTimeout will be added to the correct HashedWheelBucket.
long remainingRounds;
// This will be used to chain timeouts in HashedWheelTimerBucket via a double-linked-list.
// As only the workerThread will act on it there is no need for synchronization / volatile.
HashedWheelTimeout next;
HashedWheelTimeout prev;
// The bucket to which the timeout was added
HashedWheelBucket bucket;
HashedWheelTimeout(HashedWheelTimer timer, TimerTask task, long deadline) {
this.timer = timer;
this.task = task;
this.deadline = deadline;
}
@Override
public Timer timer() {
return timer;
}
@Override
public TimerTask task() {
return task;
}
@Override
public boolean cancel() {
// only update the state it will be removed from HashedWheelBucket on next tick.
if (!compareAndSetState(ST_INIT, ST_CANCELLED)) {
return false;
}
// If a task should be canceled we put this to another queue which will be processed on each tick.
// So this means that we will have a GC latency of max. 1 tick duration which is good enough. This way
// we can make again use of our MpscLinkedQueue and so minimize the locking / overhead as much as possible.
timer.cancelledTimeouts.add(this);
return true;
}
void remove() {
HashedWheelBucket bucket = this.bucket;
if (bucket != null) {
bucket.remove(this);
} else {
timer.pendingTimeouts.decrementAndGet();
}
}
public void expire() {
if (!compareAndSetState(ST_INIT, ST_EXPIRED)) {
return;
}
try {
task.run(this);
} catch (Throwable t) {
if (logger.isWarnEnabled()) {
logger.warn("An exception was thrown by " + TimerTask.class.getSimpleName() + '.', t);
}
}
}
- 添加调度任务
这里添加任务就是创建实际调度的对象,时间轮的启动也在这里start()
,最后创建调度元素后,添加到一个队列里,然后在调度的时候,再从队列转换到buckets
中。这个队列是使用timeouts = PlatformDependent.newMpscQueue();
jclTools创建的。是一个高性能的并发Queue包。
@Override
public Timeout newTimeout(TimerTask task, long delay, TimeUnit unit) {
if (task == null) {
throw new NullPointerException("task");
}
if (unit == null) {
throw new NullPointerException("unit");
}
long pendingTimeoutsCount = pendingTimeouts.incrementAndGet();
if (maxPendingTimeouts > 0 && pendingTimeoutsCount > maxPendingTimeouts) {
pendingTimeouts.decrementAndGet();
throw new RejectedExecutionException("Number of pending timeouts ("
+ pendingTimeoutsCount + ") is greater than or equal to maximum allowed pending "
+ "timeouts (" + maxPendingTimeouts + ")");
}
start();
// Add the timeout to the timeout queue which will be processed on the next tick.
// During processing all the queued HashedWheelTimeouts will be added to the correct HashedWheelBucket.
long deadline = System.nanoTime() + unit.toNanos(delay) - startTime;
// Guard against overflow.
if (delay > 0 && deadline < 0) {
deadline = Long.MAX_VALUE;
}
HashedWheelTimeout timeout = new HashedWheelTimeout(this, task, deadline);
timeouts.add(timeout);
return timeout;
}
- 启动
时间轮对象本身的start()
方法是public
的,但是在添加调度任务的时候启动即可,不用显式地调用,毕竟如果时间轮没有任务,也没有启动的必要。注意这里判断状态都是原子类,其中还主要用到了AtomicIntegerFieldUpdater
,是jdk基于反射实现的原子状态管理类。
public void start() {
switch (WORKER_STATE_UPDATER.get(this)) {
case WORKER_STATE_INIT:
if (WORKER_STATE_UPDATER.compareAndSet(this, WORKER_STATE_INIT, WORKER_STATE_STARTED)) {
workerThread.start();
}
break;
case WORKER_STATE_STARTED:
break;
case WORKER_STATE_SHUTDOWN:
throw new IllegalStateException("cannot be started once stopped");
default:
throw new Error("Invalid WorkerState");
}
// Wait until the startTime is initialized by the worker.
while (startTime == 0) {
try {
startTimeInitialized.await();
} catch (InterruptedException ignore) {
// Ignore - it will be ready very soon.
}
}
}
执行示例
import io.netty.util.HashedWheelTimer;
import org.junit.Test;
import java.time.LocalDateTime;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
@Test
public void testTimeWheel() throws InterruptedException {
HashedWheelTimer wheelTimer = new HashedWheelTimer(Executors.defaultThreadFactory(), 1, TimeUnit.SECONDS, 64, false);
System.out.println("time wheel start@" + LocalDateTime.now());
wheelTimer.newTimeout(timeout -> System.out.println("timeout 10s --> " + LocalDateTime.now()), 10, TimeUnit.SECONDS);
wheelTimer.newTimeout(timeout -> System.out.println("timeout 20s --> " + LocalDateTime.now()), 20, TimeUnit.SECONDS);
Thread.currentThread().join();
}
运行结果:
time wheel start@2020-11-13T18:10:03.232
timeout 10s --> 2020-11-13T18:10:14.234
timeout 20s --> 2020-11-13T18:10:24.233
总结
以上就是本期的全部内容,对netty时间轮算是有了个初步的了解。对于其中一些更加深入的细节,还需要再努力研究下。感谢阅读。以下参考资料感兴趣的读者可以多做深入。
参考资料
- Hashed and Hierarchical timing wheels : Data structures for the efficient implementation of timer facility
- George Varghese and Tony Lauck's slide
- 时间轮详解
- Netty学习
- netty-hashedwheeltimer