pytorch--深度学习神经网络中可视化工具Visdom的使用

0.使用visdom服务

先用 python -m visdom.server命令打开visdom服务。

然后登录网页 http://localhost:8097 ,就能够进入到visdom服务中。

1.展示图片

单张图片:

import cv2
import visdom
vis = visdom.Visdom(env='default2',server='http://127.0.0.1',port=8097)#建立visdom实例
image_name = r'E:\datasets\mydata_1216\test\00000.png'
image = cv2.imread(image_name)
image = image.transpose(2,0,1)[::-1,...]#visdom是把通道数放前面的,所以先换通道数,再把BGR换成RGB
vis.images(image,win='win',opts=dict(title='picture'))  #把图片放到visdom服务器以显示出来

由于visdom处理方式是通道数是摆在长和宽前面的,而一般图片是(长,宽,通道数),所以得转过来。而且opencv读入图片的方式的BGR的,visdom处理的是RGB的,所以要把BGR转成RGB。

显示效果:

pytorch--深度学习神经网络中可视化工具Visdom的使用_第1张图片

 

2.展示柱状图

import numpy as np
import visdom
vis = visdom.Visdom(env='default2',server='http://127.0.0.1',port=8097)#建立visdom实例

def bar(name,data,pins,legendnum,*args): #data表示要输入的数据,pins 表示有多少套数据,legendnum表示每套有多少个数据
    args = list(args)
    l = len(args)
    l2 = int(len(args)/2)
    args1 = args[0:l2]
    args2 = args[l2:l]
    data = data.reshape(pins,legendnum)
    vis.bar(
        X=data,win=name,opts=dict(stackd=False,rownames=args1,legend=args2)
    )

bar('bar',np.array([1,2,3,8,5,6]),2,3,'Anet','Bnet','a','b','c') #列表转成numpy格式的原因是,numpy才能使用reshape

pytorch--深度学习神经网络中可视化工具Visdom的使用_第2张图片

 

3.展示折线图

画静态折线:

import numpy as np
import visdom
vis = visdom.Visdom(env='default2',server='http://127.0.0.1',port=8097)#建立visdom实例

epochs = 4
x=np.array(range(epochs))
loss1 = np.array([0.5,0.2,0.1,0.6])
loss2 = np.array([0.8,0.6,0.1,0.5])
vis.line(Y=np.column_stack((loss1,loss2)),
         X=np.column_stack((x,x)),win='line',opts=dict(legend=["loss1", "loss2"],
                                                    title='line demo',
                                                    xlabel='Epochs',
                                                    ylabel='Loss',))

pytorch--深度学习神经网络中可视化工具Visdom的使用_第3张图片

动态画折线:

import time
import numpy as np
import visdom
vis = visdom.Visdom(env='default2',server='http://127.0.0.1',port=8097)#建立visdom实例

epochs = 10
x,y = 0,0
win = vis.line(X=np.array([x]),Y=np.array([y]),opts=(dict(title='lines')))
for i in range(epochs):
    y+=i
    time.sleep(1)
    vis.line(X=np.array([i]),Y=np.array([y]),win=win,update='append')

动态画多条折线:

import time
import numpy as np
import visdom
vis = visdom.Visdom(env='default2',server='http://127.0.0.1',port=8097)#建立visdom实例

epochs = 10
loss1 = 0
loss2 = 0
acc = 0
for i in range(epochs):
    x=np.array([i])
    loss1 += i
    loss1 = np.array(loss1)
    loss2 += 2*i
    loss2 = np.array(loss2)
    acc += 0.5*i
    acc = np.array(acc)
    time.sleep(1)
    vis.line(Y=np.column_stack((loss1,loss2,acc)),
             X=np.column_stack((x,x,x)),win='line',update='append',opts=dict(legend=["loss1", "loss2","acc"],
                                                        title='line demo',
                                                        xlabel='Epochs',
                                                        ylabel='Value',))

 

4.结合神经网络(CNN对mnist数据集)绘制其损失曲线:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import visdom
import numpy as np

lr = 0.01  # 学习率
momentum = 0.5
log_interval = 10  # 跑多少次batch进行一次日志记录
epochs = 10
batch_size = 64
test_batch_size = 1000


class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Sequential(  # input_size=(1*28*28)
            nn.Conv2d(1, 6, 5, 1, 2),  # padding=2保证输入输出尺寸相同
            nn.ReLU(),  # input_size=(6*28*28)
            nn.MaxPool2d(kernel_size=2, stride=2),  # output_size=(6*14*14)
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(6, 16, 5),
            nn.ReLU(),  # input_size=(16*10*10)
            nn.MaxPool2d(2, 2)  # output_size=(16*5*5)
        )
        self.fc1 = nn.Sequential(
            nn.Linear(16 * 5 * 5, 120),
            nn.ReLU()
        )
        self.fc2 = nn.Sequential(
            nn.Linear(120, 84),
            nn.ReLU()
        )
        self.fc3 = nn.Linear(84, 10)

    # 定义前向传播过程,输入为x
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        # nn.Linear()的输入输出都是维度为一的值,所以要把多维度的tensor展平成一维
        x = x.view(x.size()[0], -1)
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x  # F.softmax(x, dim=1)


def train(epoch):  # 定义每个epoch的训练细节
    model.train()  # 设置为trainning模式
    loss_total = 0
    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.to(device)
        target = target.to(device)
        data, target = Variable(data), Variable(target)  # 把数据转换成Variable
        optimizer.zero_grad()  # 优化器梯度初始化为零
        output = model(data)  # 把数据输入网络并得到输出,即进行前向传播
        loss = F.cross_entropy(output, target)  # 交叉熵损失函数
        loss_total+=loss
        loss.backward()  # 反向传播梯度
        optimizer.step()  # 结束一次前传+反传之后,更新参数
        if batch_idx % log_interval == 0:  # 准备打印相关信息
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))
        aver_loss = loss_total/len(train_loader)
    x = np.array([epoch])
    loss1 = np.array([aver_loss.item()])
    vis.line(X=x, Y=loss1, win='windows', update='append')


if __name__ == '__main__':
    vis = visdom.Visdom(env='cnn', server='http://127.0.0.1', port=8097)  # 建立visdom实例
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  # 启用GPU
    train_loader = torch.utils.data.DataLoader(  # 加载训练数据
        datasets.MNIST('../data', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))  # 数据集给出的均值和标准差系数,每个数据集都不同的,都数据集提供方给出的
                       ])),
        batch_size=batch_size, shuffle=True)

    model = LeNet()  # 实例化一个网络对象
    model = model.to(device)
    optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)  # 初始化优化器

    for epoch in range(1, epochs + 1):  # 以epoch为单位进行循环
        train(epoch)

pytorch--深度学习神经网络中可视化工具Visdom的使用_第4张图片

你可能感兴趣的:(#,pytorch框架,工具)