yolov3训练人脸数据库widerface

1.安装darknet

git 源码

git https://github.com/AlexeyAB/darknet.git

详细安装项目里面已经写得非常清楚,支持Win Linux
具体操作指南见https://pjreddie.com/darknet/yolo/

2.下载widerface

可以自行百度,也可以下载百度云:链接:https://pan.baidu.com/s/1Qh6Jnv3uVHnziiFMD4y4yA 密码:e36e

3.生成VOC格式数据

widerface数据集有自带标注好的人脸框,我们需要做的就是将其生成VOC格式的labels,其他信息都没用到。
这里假设已经根据darknet官网实际操作了一遍训练voc,此时的位置为darknet根目录下:
这里写图片描述

cd VOCdevkit/

脚本如下:

'''
face_labels.py
'''
import os,cv2
import numpy as np
from os import listdir, getcwd
rootdir="./wider_face" #widerface数据集所在目录
convet2yoloformat=True
resized_dim=(48, 48)

minsize2select=20#widerface中有大量小人脸,只取20以上的来训练
usepadding=True

datasetprefix="./darknet/VOCdevkit/VOC2007"

def convertimgset(img_set="train"):
    imgdir=rootdir+"/WIDER_"+img_set+"/images"
    gtfilepath=rootdir+"/wider_face_split/wider_face_"+img_set+"_bbx_gt.txt"
    imagesdir=datasetprefix+"/JPEGImages"
    vocannotationdir=rootdir+"/Annotations"
    labelsdir=datasetprefix+"/labels"
    if not os.path.exists(imagesdir):
        os.mkdir(imagesdir)
    if convet2yoloformat:
        if not os.path.exists(labelsdir):
            os.mkdir(labelsdir)
    if convert2vocformat:
        if not os.path.exists(vocannotationdir):
            os.mkdir(vocannotationdir)
    index=0
    img_f=open(rootdir+"/"+img_set+".txt","w")
    with open(gtfilepath,'r') as gtfile:
        while(True ):#and len(faces)<10
            filename=gtfile.readline()[:-1]
            print filename
            if(filename==""):
                break;
            #sys.stdout.write("\r"+str(index)+":"+filename+"\t\t\t")
            #sys.stdout.flush()
            imgpath=imgdir+"/"+filename
            img=cv2.imread(imgpath)
            if not img.data:
                break;
            imgheight=img.shape[0]
            imgwidth=img.shape[1]
            maxl=max(imgheight,imgwidth)
            paddingleft=(maxl-imgwidth)>>1
            paddingright=(maxl-imgwidth)>>1
            paddingbottom=(maxl-imgheight)>>1
            paddingtop=(maxl-imgheight)>>1
            saveimg=cv2.copyMakeBorder(img,paddingtop,paddingbottom,paddingleft,paddingright,cv2.BORDER_CONSTANT,value=0)
            showimg=saveimg.copy()
            numbbox=int(gtfile.readline())
            bboxes=[]
            for i in range(numbbox):
                line=gtfile.readline()
                line=line.split()
                line=line[0:4]
                if(int(line[3])<=0 or int(line[2])<=0):
                    continue
                x=int(line[0])+paddingleft
                y=int(line[1])+paddingtop
                width=int(line[2])
                height=int(line[3])
                bbox=(x,y,width,height)
                x2=x+width
                y2=y+height
                #face=img[x:x2,y:y2]
                if width>=minsize2select and height>=minsize2select:
                    bboxes.append(bbox)
                    cv2.rectangle(showimg,(x,y),(x2,y2),(0,255,0))
                    #maxl=max(width,height)
                    #x3=(int)(x+(width-maxl)*0.5)
                    #y3=(int)(y+(height-maxl)*0.5)
                    #x4=(int)(x3+maxl)
                    #y4=(int)(y3+maxl)
                    #cv2.rectangle(img,(x3,y3),(x4,y4),(255,0,0))
                else:
                    cv2.rectangle(showimg,(x,y),(x2,y2),(0,0,255))
            filename=filename.replace("/","_")
            if convet2yoloformat:
                height=saveimg.shape[0]
                width=saveimg.shape[1]
                txtpath=labelsdir+"/"+filename
                txtpath=txtpath[:-3]+"txt"
                ftxt=open(txtpath,'w')
                for i in range(len(bboxes)):
                    bbox=bboxes[i]
                    xcenter=(bbox[0]+bbox[2]*0.5)/width
                    ycenter=(bbox[1]+bbox[3]*0.5)/height
                    wr=bbox[2]*1.0/width
                    hr=bbox[3]*1.0/height
                    txtline="0 "+str(xcenter)+" "+str(ycenter)+" "+str(wr)+" "+str(hr)+"\n"
                    ftxt.write(txtline)
                ftxt.close()
        index=index+1
    img_f.close()

def convertdataset():
    img_sets=["train","val"]
    for img_set in img_sets:
        convertimgset(img_set)

if __name__=="__main__":
    convertdataset()

PS::改脚本也是通过一篇博客修改的(忘记是那篇博客了,如有侵权联系删除),保证所有txt里面都有相对应的原图存下来。

python face_labels.py

最终会生成VOC格式数据,这里只得到训练的图片以及标签,图片放在VOC2007/JPEGIMAGES/下,标签在labels下。train.txt 以及val.txt在widerface数据集下。我move到了darknet跟目录下。

4.修改配置文件

一共有三个文件需要修改。
1)data/face.names
2)cfg/face.data
3)cfg/yolov3-face.cfg
这三个文件都是由对应的voc文件copy而来。修改后结果如下:
这里写图片描述
我们只训练人脸,所以face.name里面就一类face.
yolov3训练人脸数据库widerface_第1张图片
face.data里面填上对应的txt路径以及face.names路径就行。类别数量为1
最后是yolo3-face.cfg

1 [net]
2 # Testing
3 # batch=1
4 # subdivisions=1
5 # Training
6 batch= 64
7 subdivisions=16

8 width=416
9 height=416
10 channels=3
11 momentum=0.9
12 decay=0.0005
13 angle=0
14 saturation = 1.5
15 exposure = 1.5
16 hue=.1
17
18 learning_rate=0.001
19 burn_in=1000
20 max_batches = 100000 # 感谢mxj大神
21 policy=steps
22 steps=1,100,60000,80000
23 scales=.1,10,.1,.1

601 [convolutional]
602 size=1
603 stride=1
604 pad=1
605 filters=18 # filters = 3*(classes + 5),这里face是一类,所以是18
606 activation=linear
607
608 [yolo]
609 mask = 6,7,8
610 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
611 classes=1 # 一类face
612 num=9
613 jitter=.3
614 ignore_thresh = .5
615 truth_thresh = 1
616 random=1

685 [convolutional]
686 size=1
687 stride=1
688 pad=1
689 filters=18
690 activation=linear
691
692 [yolo]
693 mask = 3,4,5
694 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
695 classes=1
696 num=9
697 jitter=.3
698 ignore_thresh = .5
699 truth_thresh = 1
700 random=1

769 [convolutional]
770 size=1
771 stride=1
772 pad=1
773 filters=18
774 activation=linear
775
776 [yolo]
777 mask = 0,1,2
778 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
779 classes=1
780 num=9
781 jitter=.3
782 ignore_thresh = .5
783 truth_thresh = 1
784 random=1

需要修改的地方都已经标红,最左侧为行号。

5训练

根据darknet官网操作指导,输入脚本

./darknet detector train cfg/face.data cfg/yolov3-face.cfg darknet53.conv.74

万事大吉,慢慢等吧,贴一张刚刚训练的loss.
yolov3训练人脸数据库widerface_第2张图片

6测试

编写测试脚本,很简单安装官网上来就ok

./darknet detector test ./cfg/face.data ./cfg/yolov3-face.cfg ./backup/yolov3-face_16100.weights data/3.jpg

附两张测试结果
yolov3训练人脸数据库widerface_第3张图片
yolov3训练人脸数据库widerface_第4张图片
这里是16100次之后的结果。

你可能感兴趣的:(framework,yolo)