多线程(二)——多线程同步安全问题

为什么有线程安全问题?

当多个线程同时共享,同一个全局变量或静态变量,做写的操作时,可能会发生数据冲突问题,也就是线程安全问题。但是做读操作是不会发生数据冲突问题。
案例:需求现在有100张火车票,有两个窗口同时抢火车票,请使用多线程模拟抢票效果。

  • 代码:
class ThreadTrain1 implements Runnable {
  private int count = 100;
  private static Object oj = new Object();

  @Override
  public void run() {
    while (count > 0) {
        try {
            Thread.sleep(50);
        } catch (Exception e) {
            // TODO: handle exception
        }
        sale();
    }
  }

  public void sale() {
    // 前提 多线程进行使用、多个线程只能拿到一把锁。
    // 保证只能让一个线程 在执行 缺点效率降低
    // synchronized (oj) {
        if (count > 0) {
          System.out.println(Thread.currentThread().getName() + ",出售第" + (100 - count + 1) + "票");
          count--;
        }
    // }
  }
}

public class ThreadDemo {
  public static void main(String[] args) {
    ThreadTrain1 threadTrain1 = new ThreadTrain1();
    Thread t1 = new Thread(threadTrain1, "①号窗口");
    Thread t2 = new Thread(threadTrain1, "②号窗口");
    t1.start();
    t2.start();
  }
}

结论发现,多个线程共享同一个全局成员变量时,做写的操作可能会发生数据冲突问题。

线程安全解决办法

问:如何解决多线程之间线程安全问题?
答:使用多线程之间同步synchronized或使用锁(lock)。

问:为什么使用线程同步或使用锁能解决线程安全问题呢?
答:将可能会发生数据冲突问题(线程不安全问题),只能让当前一个线程进行执行。代码执行完成后释放锁,然后才能让其他线程进行执行。这样的话就可以解决线程不安全问题。

问:什么是多线程之间同步?
答:当多个线程共享同一个资源,不会受到其他线程的干扰。

同步代码块

  • 什么是同步代码块?
    就是将可能会发生线程安全问题的代码,给包括起来。
    synchronized(同一个数据){
    可能会发生线程冲突问题
    }
    这就是同步代码块
定义:

synchronized(对象)      //这个对象可以为任意对象 
{ 
   需要被同步的代码 
} 

对象如同锁,持有锁的线程可以在同步中执行 ,没持有锁的线程即使获取CPU的执行权,也进不去 。

  • 同步的前提:
    1,必须要有两个或者两个以上的线程
    2,必须是多个线程使用同一个锁
    3,必须保证同步中只能有一个线程在运行
    好处:解决了多线程的安全问题
    弊端:多个线程需要判断锁,较为消耗资源、抢锁的资源。

    代码样例:
    private static Object oj = new Object();      
    public void sale() {
      // 前提 多线程进行使用、多个线程只能拿到一把锁。
      // 保证只能让一个线程 在执行 缺点效率降低
       synchronized (oj) {
        if (count > 0) {
          System.out.println(Thread.currentThread().getName() + ",出售第" + (100 - count + 1) + "票");
          count--;
        }
       }
    }
    

同步函数

  • 同步函数:在方法上修饰synchronized 称为同步函数。
  • 同步函数用的是什么锁?为什么?
    答:同步函数使用this锁。
    证明方式: 一个线程使用同步代码块(this明锁),另一个线程使用同步函数。如果两个线程抢票不能实现同步,那么会出现数据错误。
  • 代码:
class ThreadTrain2 implements Runnable {
private int count = 100;
public boolean flag = true;
private static Object oj = new Object();

@Override
public void run() {
    if (flag) {

        while (count > 0) {

            synchronized (this) {
                if (count > 0) {
                    try {
                        Thread.sleep(50);
                    } catch (Exception e) {
                        // TODO: handle exception
                    }
                    System.out.println(Thread.currentThread().getName() + ",出售第" + (100 - count + 1) + "票");
                    count--;
                }
            }

        }

    } else {
        while (count > 0) {
            sale();
        }
    }

}

public synchronized void sale() {
    // 前提 多线程进行使用、多个线程只能拿到一把锁。
    // 保证只能让一个线程 在执行 缺点效率降低
    // synchronized (oj) {
    if (count > 0) {
        try {
            Thread.sleep(50);
        } catch (Exception e) {
            // TODO: handle exception
        }
        System.out.println(Thread.currentThread().getName() + ",出售第" + (100 - count + 1) + "票");
        count--;
    }
    // }
  }
}

public class ThreadDemo2 {
  public static void main(String[] args) throws InterruptedException {
    ThreadTrain2 threadTrain1 = new ThreadTrain2();
    Thread t1 = new Thread(threadTrain1, "①号窗口");
    Thread t2 = new Thread(threadTrain1, "②号窗口");
    t1.start();
    Thread.sleep(40);
    threadTrain1.flag = false;
    t2.start();
  }
 }

静态同步函数

静态同步函数:方法上加上static关键字,使用synchronized 关键字修饰,使用类.class文件作为锁对象。
静态的同步函数使用的锁为该函数所属字节码文件对象,可以用 getClass方法获取,也可以用当前 类名.class 表示。

代码样例:

synchronized (ThreadTrain.class) {
        System.out.println(Thread.currentThread().getName() + ",出售 第" + (100 - trainCount + 1) + "张票.");
        trainCount--;
        try {
            Thread.sleep(100);
        } catch (Exception e) {
        }
}

面试常问:
一个线程使用同步函数,另一个线程使用同步代码块(this),能够实现同步。
一个线程使用同步函数,另一个线程使用同步代码块(非this),不能实现同步。
一个线程使用同步函数,另一个线程使用静态同步函数,不能实现同步。
总结:
同步函数使用this锁;
同步代码块可使用任意对象锁或者this锁;
静态同步函数使用类的字节码.class文件锁。

多线程死锁

  • 多线程死锁:同步中嵌套同步,导致锁无法释放

  • 代码:

    class ThreadTrain6 implements Runnable {
    // 这是货票总票数,多个线程会同时共享资源
    private int trainCount = 100;
    public boolean flag = true;
    private Object obj= new Object();
    
    @Override
    public void run() {
      if (flag) {
          while (true) {
              synchronized (obj) {
                  // 锁(同步代码块)在什么时候释放? 代码执行完, 自动释放锁.
                  // 如果flag为true 先拿到 obj锁,在拿到this 锁、 才能执行。
                  // 如果flag为false先拿到this,在拿到obj锁,才能执行。
                  // 死锁解决办法:不要在同步中嵌套同步。
                  sale();
              }
          }
      } else {
          while (true) {
              sale();
          }
      }
    }
    
    public synchronized void sale() {
      synchronized (obj) {
          if (trainCount > 0) {
              try {
                  Thread.sleep(40);
              } catch (Exception e) {
    
              }
              System.out.println(Thread.currentThread().getName() + ",出售 第" + (100 - trainCount + 1) + "张票.");
              trainCount--;
          }
        }
      }
    }
    
    public class DeadlockThread {
      public static void main(String[] args) throws InterruptedException {
        ThreadTrain6 threadTrain = new ThreadTrain6(); // 定义 一个实例
        Thread thread1 = new Thread(threadTrain, "一号窗口");
        Thread thread2 = new Thread(threadTrain, "二号窗口");
        thread1.start();
        Thread.sleep(40);
        threadTrain.flag = false;
        thread2.start();
      }
    }
    

原因分析:
线程一先拿到同步代码块的obj锁,再拿到同步函数的this锁;
线程一先拿到同步函数的this锁,再拿到同步代码块的obj锁,
每个线程都需要对方的锁,但又互不让锁,就会导致死锁。

多线程有三大特性

原子性、可见性、有序性

什么是原子性

即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。
一个很经典的例子就是银行账户转账问题: 比如从账户A向账户B转1000元,那么必然包括2个操作:从账户A减去1000元,往账户B加上1000元。这2个操作必须要具备原子性才能保证不出现一些意外的问题。
我们操作数据也是如此,比如i = i+1;其中就包括,读取i的值,计算i,写入i。这行代码在Java中是不具备原子性的,则多线程运行肯定会出问题,所以也需要我们使用同步和lock这些东西来确保这个特性了。
原子性其实就是保证数据一致、线程安全一部分,

什么是可见性

当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。
若两个线程在不同的cpu,那么线程1改变了i的值还没刷新到主存,线程2又使用了i,那么这个i值肯定还是之前的,线程1对变量的修改线程没看到这就是可见性问题。

什么是有序性

程序执行的顺序按照代码的先后顺序执行。
一般来说处理器为了提高程序运行效率,可能会对输入代码进行优化,它不保证程序中各个语句的执行先后顺序同代码中的顺序一致,但是它会保证程序最终执行结果和代码顺序执行的结果是一致的。如下:
int a = 10; //语句1
int r = 2; //语句2
a = a + 3; //语句3
r = a*a; //语句4
则因为重排序,他还可能执行顺序为 2-1-3-4,1-3-2-4 但绝不可能 2-1-4-3,因为这打破了依赖关系。 显然重排序对单线程运行是不会有任何问题,而多线程就不一定了,所以我们在多线程编程时就得考虑这个问题了。

Java内存模型

共享内存模型指的就是Java内存模型(简称JMM),JMM决定一个线程对共享变量的写入时,能对另一个线程可见。从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。本地内存是JMM的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。

多线程(二)——多线程同步安全问题_第1张图片

从上图来看,线程A与线程B之间如要通信的话,必须要经历下面2个步骤:
1. 首先,线程A把本地内存A中更新过的共享变量刷新到主内存中去。
2. 然后,线程B到主内存中去读取线程A之前已更新过的共享变量。

下面通过示意图来说明这两个步骤:

多线程(二)——多线程同步安全问题_第2张图片

如上图所示,本地内存A和B有主内存中共享变量x的副本。假设初始时,这三个内存中的x值都为0。线程A在执行时,把更新后的x值(假设值为1)临时存放在自己的本地内存A中。当线程A和线程B需要通信时,线程A首先会把自己本地内存中修改后的x值刷新到主内存中,此时主内存中的x值变为了1。随后,线程B到主内存中去读取线程A更新后的x值,此时线程B的本地内存的x值也变为了1。
从整体来看,这两个步骤实质上是线程A在向线程B发送消息,而且这个通信过程必须要经过主内存。JMM通过控制主内存与每个线程的本地内存之间的交互,来为java程序员提供内存可见性保证。

总结
Java内存模型:java内存模型简称jmm,定义了一个线程对另一个线程可见。共享变量存放在主内存中,每个线程都有自己的本地内存,当多个线程同时访问一个数据的时候,可能本地内存没有及时刷新到主内存,所以就会发生线程安全问题。
Java内存结构:是属于jvm内存分配,不要和Java内存模型搞混。

volatile

volatile 关键字的作用是变量在多个线程之间可见。

  • 代码:
classThreadVolatileDemo extends Thread {

  public boolean flag= true;

  @Override

  public void run() {

    System.out.println("开始执行子线程....");

    while (flag) {

    }

    System.out.println("线程停止");

}

  public void setRuning(boolean flag) {

    this.flag= flag;

  }

}

public class ThreadVolatile {

  public static voidmain(String[] args) throws InterruptedException {

    ThreadVolatileDemo threadVolatileDemo = new ThreadVolatileDemo();

    threadVolatileDemo.start();

    Thread.sleep(3000);

    threadVolatileDemo.setRuning(false);

    System.out.println("flag 已经设置成false");

    Thread.sleep(1000);

    System.out.println(threadVolatileDemo.flag);

  }

}

已经将结果设置为fasle为什么?还一直在运行呢。
原因:线程之间是不可见的,读取的是副本,没有及时读取到主内存结果。
解决办法:使用volatile关键字将解决线程之间可见性, 强制线程每次读取该值的时候都去“主内存”中取值。

Volatile非原子性

注意: Volatile非原子性

public class VolatileNoAtomic extends Thread {

  private static volatile int count;

  // private static AtomicInteger count = new AtomicInteger(0);

  private static void addCount() {

    for (int i = 0;i< 1000;i++) {
      count++;
      // count.incrementAndGet();
    }
    System.out.println(count);
  }
  public void run() {
    addCount();
  }
  public static void main(String[] args) {
    VolatileNoAtomic[] arr = new VolatileNoAtomic[100];
    for (int i = 0; i < 10; i++) {
        arr[i] = new VolatileNoAtomic();
    }
    for (int i = 0; i < 10; i++) {
        arr[i].start();
    }
  }
}

运行结果:


多线程(二)——多线程同步安全问题_第3张图片

结果发现 数据不同步,因为Volatile不用具备原子性。

使用AtomicInteger原子类
AtomicInteger是一个提供原子操作的Integer类,通过线程安全的方式操作加减。(JDK1.5并发包中的类)

public class VolatileNoAtomic extends Thread {
  static int count = 0;
  private static AtomicInteger atomicInteger = new AtomicInteger(0);

  @Override
  public void run() {
    for (int i = 0; i < 1000; i++) {
        //等同于i++
        atomicInteger.incrementAndGet();
    }
    System.out.println(count);
  }

  public static void main(String[] args) {
    // 初始化10个线程
    VolatileNoAtomic[] volatileNoAtomic = new VolatileNoAtomic[10];
    for (int i = 0; i < 10; i++) {
        // 创建
        volatileNoAtomic[i] = new VolatileNoAtomic();
    }
    for (int i = 0; i < volatileNoAtomic.length; i++) {
        volatileNoAtomic[i].start();
    }
  }
}

volatile与synchronized区别

仅靠volatile不能保证线程的安全性。(原子性)
①volatile轻量级,只能修饰变量。
synchronized重量级,还可修饰方法
②volatile只能保证数据的可见性,不能用来同步,因为多个线程并发访问volatile修饰的变量不会阻塞。
synchronized不仅保证可见性,而且还保证原子性(数据一致),因为,只有获得了锁的线程才能进入临界区,从而保证临界区中的所有语句都全部执行。多个线程争抢synchronized锁对象时,会出现阻塞。
③线程安全性
线程安全性包括两个方面:1)可见性,2)原子性。
从上面自增的例子中可以看出:仅仅使用volatile并不能保证线程安全性。而synchronized则可实现线程的安全性。

你可能感兴趣的:(多线程(二)——多线程同步安全问题)