上次写这篇文章的时候也差不多是一年前了,这一年我兜兜转转从android到java又回到android,校招面了很多大厂,阿里、京东、小米、头条、知乎、腾讯、有赞,也收获了几个offer。感谢大家的关注,让我在上面也混到了一个程序员优秀作者的称号,所以为了回馈大家,一篇最完全的android面经诞生了。这是我集合了牛客网、百度、等网站的几十篇面经和我自己面试的经历的合集,希望大家喜欢。(ps:里面当然会有纰漏,如果有问题欢迎大家留言或者加QQ群讨论)
1.android事件分发机制,请详细说下整个流程
2.android view绘制机制和加载过程,请详细说下整个流程
- 1.ViewRootImpl会调用performTraversals(),其内部会调用performMeasure()、performLayout、performDraw()。
- 2.performMeasure()会调用最外层的ViewGroup的measure()-->onMeasure(),ViewGroup的onMeasure()是抽象方法,但其提供了measureChildren(),这之中会遍历子View然后循环调用measureChild()这之中会用getChildMeasureSpec()+父View的MeasureSpec+子View的LayoutParam一起获取本View的MeasureSpec,然后调用子View的measure()到View的onMeasure()-->setMeasureDimension(getDefaultSize(),getDefaultSize()),getDefaultSize()默认返回measureSpec的测量数值,所以继承View进行自定义的wrap_content需要重写。
- 3.performLayout()会调用最外层的ViewGroup的layout(l,t,r,b),本View在其中使用setFrame()设置本View的四个顶点位置。在onLayout(抽象方法)中确定子View的位置,如LinearLayout会遍历子View,循环调用setChildFrame()-->子View.layout()。
- 4.performDraw()会调用最外层ViewGroup的draw():其中会先后调用background.draw()(绘制背景)、onDraw()(绘制自己)、dispatchDraw()(绘制子View)、onDrawScrollBars()(绘制装饰)。
- 5.MeasureSpec由2位SpecMode(UNSPECIFIED、EXACTLY(对应精确值和match_parent)、AT_MOST(对应warp_content))和30位SpecSize组成一个int,DecorView的MeasureSpec由窗口大小和其LayoutParams决定,其他View由父View的MeasureSpec和本View的LayoutParams决定。ViewGroup中有getChildMeasureSpec()来获取子View的MeasureSpec。
- 6.三种方式获取measure()后的宽高:
- 1.Activity#onWindowFocusChange()中调用获取
- 2.view.post(Runnable)将获取的代码投递到消息队列的尾部。
- 3.ViewTreeObservable.
3.图片的三级缓存中,图片加载到内存中,如果内存快爆了,会发生什么?怎么处理?
首先我们要清楚图片的三级缓存是如何的
如果内存足够时不回收。内存不够时就回收软引用对象
4.Activity的启动模式
- 1.standard:默认标准模式,每启动一个都会创建一个实例,
- 2.singleTop:栈顶复用,如果在栈顶就调用onNewIntent复用,从onResume()开始
- 3.singleTask:栈内复用,本栈内只要用该类型Activity就会将其顶部的activity出栈
- 4.singleInstance:单例模式,除了3中特性,系统会单独给该Activity创建一个栈,
5.A、B、C、D分别是四种Activity的启动模式,那么A->B->C->D->A->B->C->D分别启动,最后的activity栈是怎么样的
- 1.这个题目需要深入了解activity的启动模式
- 2.最后的答案是:两个栈,前台栈是只有D,后台栈从底至上是A、B、C
6.Activity缓存方法
- 1.配置改变导致Activity被杀死,横屏变竖屏:在onStop之前会调用onSaveInstanceState()保存数据在重建Activity之后,会在onStart()之后调用onRestoreInstanceState(),并把保存下来的Bundle传给onCreate()和它会默认重建Activity当前的视图,我们可以在onCreate()中,回复自己的数据。
- 2.内存不足杀掉Activity,优先级分别是:前台可见,可见非前台,后台。
7.Service的生命周期,两种启动方法,有什么区别
- 1.context.startService() ->onCreate()- >onStart()->Service running-->(如果调用context.stopService() )->onDestroy() ->Service shut down
- 1.如果Service还没有运行,则调用onCreate()然后调用onStart();
- 2.如果Service已经运行,则只调用onStart(),所以一个Service的onStart方法可能会重复调用多次。
- 3.调用stopService的时候直接onDestroy,
- 4.如果是调用者自己直接退出而没有调用stopService的话,Service会一直在后台运行。该Service的调用者再启动起来后可以通过stopService关闭Service。
- 2.context.bindService()->onCreate()->onBind()->Service running-->onUnbind() -> onDestroy() ->Service stop
- 1.onBind将返回给客户端一个IBind接口实例,IBind允许客户端回调服务的方法,比如得到Service运行的状态或其他操作。
- 2.这个时候会把调用者和Service绑定在一起,Context退出了,Service就会调用onUnbind->onDestroy相应退出。
- 3.所以调用bindService的生命周期为:onCreate --> onBind(只一次,不可多次绑定) --> onUnbind --> onDestory。
8.怎么保证service不被杀死
- 1.提升service优先级
- 2.提升service进程优先级
- 3.onDestroy方法里重启service
9.静态的Broadcast 和动态的有什么区别
- 1.动态的比静态的安全
- 2.静态在app启动的时候就初始化了 动态使用代码初始化
- 3.静态需要配置 动态不需要
- 4.生存期,静态广播的生存期可以比动态广播的长很多
- 5.优先级动态广播的优先级比静态广播高
10.Intent可以传递哪些数据类型
- 1.Serializable
- 2.charsequence: 主要用来传递String,char等
- 3.parcelable
- 4.Bundle
11.Json有什么优劣势、解析的原理
- 1.JSON的速度要远远快于XML
- 2.JSON相对于XML来讲,数据的体积小
- 3.JSON对数据的描述性比XML较差
- 4.解析的基本原理是:词法分析
12.一个语言的编译过程
- 1.词法分析:将一串文本按规则分割成最小的结构,关键字、标识符、运算符、界符和常量等。一般实现方法是自动机和正则表达式
- 2.语法分析:将一系列单词组合成语法树。一般实现方法有自顶向下和自底向上
- 3.语义分析:对结构上正确的源程序进行上下文有关性质的审查
- 4.目标代码生成
- 5.代码优化:优化生成的目标代码,
13.动画有哪几类,各有什么特点
- 1.动画的基本原理:其实就是利用插值器和估值器,来计算出各个时刻View的属性,然后通过改变View的属性来,实现View的动画效果。
- 2.View动画:只是影像变化,view的实际位置还在原来的地方。
- 3.帧动画是在xml中定义好一系列图片之后,使用AnimationDrawable来播放的动画。
- 4.View的属性动画:
- 1.插值器:作用是根据时间的流逝的百分比来计算属性改变的百分比
- 2.估值器:在1的基础上由这个东西来计算出属性到底变化了多少数值的类
14.Handler、Looper消息队列模型,各部分的作用
- 1.MessageQueue:读取会自动删除消息,单链表维护,在插入和删除上有优势。在其next()中会无限循环,不断判断是否有消息,有就返回这条消息并移除。
- 2.Looper:Looper创建的时候会创建一个MessageQueue,调用loop()方法的时候消息循环开始,loop()也是一个死循环,会不断调用messageQueue的next(),当有消息就处理,否则阻塞在messageQueue的next()中。当Looper的quit()被调用的时候会调用messageQueue的quit(),此时next()会返回null,然后loop()方法也跟着退出。
- 3.Handler:在主线程构造一个Handler,然后在其他线程调用sendMessage(),此时主线程的MessageQueue中会插入一条message,然后被Looper使用。
- 4.系统的主线程在ActivityThread的main()为入口开启主线程,其中定义了内部类Activity.H定义了一系列消息类型,包含四大组件的启动停止。
- 5.MessageQueue和Looper是一对一关系,Handler和Looper是多对一
15.怎样退出终止App
- 1.自己设置一个Activity的栈,然后一个个finish()
16.Android IPC:Binder原理
- 1.在Activity和Service进行通讯的时候,用到了Binder。
- 1.当属于同个进程我们可以继承Binder然后在Activity中对Service进行操作
- 2.当不属于同个进程,那么要用到AIDL让系统给我们创建一个Binder,然后在Activity中对远端的Service进行操作。
- 2.系统给我们生成的Binder:
- 1.Stub类中有:接口方法的id,有该Binder的标识,有asInterface(IBinder)(让我们在Activity中获取实现了Binder的接口,接口的实现在Service里,同进程时候返回Stub否则返回Proxy),有onTransact()这个方法是在不同进程的时候让Proxy在Activity进行远端调用实现Activity操作Service
- 2.Proxy类是代理,在Activity端,其中有:IBinder mRemote(这就是远端的Binder),两个接口的实现方法不过是代理最终还是要在远端的onTransact()中进行实际操作。
- 3.哪一端的Binder是副本,该端就可以被另一端进行操作,因为Binder本体在定义的时候可以操作本端的东西。所以可以在Activity端传入本端的Binder,让Service端对其进行操作称为Listener,可以用RemoteCallbackList这个容器来装Listener,防止Listener因为经历过序列化而产生的问题。
- 4.当Activity端向远端进行调用的时候,当前线程会挂起,当方法处理完毕才会唤醒。
- 5.如果一个AIDL就用一个Service太奢侈,所以可以使用Binder池的方式,建立一个AIDL其中的方法是返回IBinder,然后根据方法中传入的参数返回具体的AIDL。
- 6.IPC的方式有:Bundle(在Intent启动的时候传入,不过是一次性的),文件共享(对于SharedPreference是特例,因为其在内存中会有缓存),使用Messenger(其底层用的也是AIDL,同理要操作哪端,就在哪端定义Messenger),AIDL,ContentProvider(在本进程中继承实现一个ContentProvider,在增删改查方法中调用本进程的SQLite,在其他进程中查询),Socket
17.描述一次跨进程通讯
- 1.client、proxy、serviceManager、BinderDriver、impl、service
- 2.client发起一个请求service信息的Binder请求到BinderDriver中,serviceManager发现BinderDiriver中有自己的请求 然后将clinet请求的service的数据返回给client这样完成了一次Binder通讯
- 3.clinet获取的service信息就是该service的proxy,此时调用proxy的方法,proxy将请求发送到BinderDriver中,此时service的 Binder线程池循环发现有自己的请求,然后用impl就处理这个请求最后返回,这样完成了第二次Binder通讯
4.中间client可挂起,也可以不挂起,有一个关键字oneway可以解决这个
18.android重要术语解释
- 1.ActivityManagerServices,简称AMS,服务端对象,负责系统中所有Activity的生命周期
- 2.ActivityThread,App的真正入口。当开启App之后,会调用main()开始运行,开启消息循环队列,这就是传说中的UI线程或者叫主线程。与ActivityManagerServices配合,一起完成Activity的管理工作
- 3.ApplicationThread,用来实现ActivityManagerService与ActivityThread之间的交互。在ActivityManagerService需要管理相关Application中的Activity的生命周期时,通过ApplicationThread的代理对象与ActivityThread通讯。
- 4.ApplicationThreadProxy,是ApplicationThread在服务器端的代理,负责和客户端的ApplicationThread通讯。AMS就是通过该代理与ActivityThread进行通信的。
- 5.Instrumentation,每一个应用程序只有一个Instrumentation对象,每个Activity内都有一个对该对象的引用。Instrumentation可以理解为应用进程的管家,ActivityThread要创建或暂停某个Activity时,都需要通过Instrumentation来进行具体的操作。
- 6.ActivityStack,Activity在AMS的栈管理,用来记录已经启动的Activity的先后关系,状态信息等。通过ActivityStack决定是否需要启动新的进程。
- 7.ActivityRecord,ActivityStack的管理对象,每个Activity在AMS对应一个ActivityRecord,来记录Activity的状态以及其他的管理信息。其实就是服务器端的Activity对象的映像。
- 8.TaskRecord,AMS抽象出来的一个“任务”的概念,是记录ActivityRecord的栈,一个“Task”包含若干个ActivityRecord。AMS用TaskRecord确保Activity启动和退出的顺序。如果你清楚Activity的4种launchMode,那么对这个概念应该不陌生。
19.理解Window和WindowManager
- 1.Window用于显示View和接收各种事件,Window有三种类型:应用Window(每个Activity对应一个Window)、子Window(不能单独存在,附属于特定Window)、系统window(Toast和状态栏)
- 2.Window分层级,应用Window在1-99、子Window在1000-1999、系统Window在2000-2999.WindowManager提供了增删改View三个功能。
- 3.Window是个抽象概念:每一个Window对应着一个View和ViewRootImpl,Window通过ViewRootImpl来和View建立联系,View是Window存在的实体,只能通过WindowManager来访问Window。
- 4.WindowManager的实现是WindowManagerImpl其再委托给WindowManagerGlobal来对Window进行操作,其中有四个List分别储存对应的View、ViewRootImpl、WindowManger.LayoutParams和正在被删除的View
- 5.Window的实体是存在于远端的WindowMangerService中,所以增删改Window在本端是修改上面的几个List然后通过ViewRootImpl重绘View,通过WindowSession(每个应用一个)在远端修改Window。
- 6.Activity创建Window:Activity会在attach()中创建Window并设置其回调(onAttachedToWindow()、dispatchTouchEvent()),Activity的Window是由Policy类创建PhoneWindow实现的。然后通过Activity#setContentView()调用PhoneWindow的setContentView。
20.Bitmap的处理
- 1.当使用ImageView的时候,可能图片的像素大于ImageView,此时就可以通过BitmapFactory.Option来对图片进行压缩,inSampleSize表示缩小2^(inSampleSize-1)倍。
- 2.BitMap的缓存:
- 1.使用LruCache进行内存缓存。
- 2.使用DiskLruCache进行硬盘缓存。
- 3.实现一个ImageLoader的流程:同步异步加载、图片压缩、内存硬盘缓存、网络拉取
- 1.同步加载只创建一个线程然后按照顺序进行图片加载
- 2.异步加载使用线程池,让存在的加载任务都处于不同线程
- 3.为了不开启过多的异步任务,只在列表静止的时候开启图片加载
21.如何实现一个网络框架(参考Volley)
- 1.缓存队列,以url为key缓存内容可以参考Bitmap的处理方式,这里单独开启一个线程。
- 2.网络请求队列,使用线程池进行请求。
- 3.提供各种不同类型的返回值的解析如String,Json,图片等等。
22.ClassLoader的基础知识
- 1.双亲委托:一个ClassLoader类负责加载这个类所涉及的所有类,在加载的时候会判断该类是否已经被加载过,然后会递归去他父ClassLoader中找。
- 2.可以动态加载Jar通过URLClassLoader
- 3.ClassLoader 隔离问题 JVM识别一个类是由:ClassLoader id+PackageName+ClassName。
- 4.加载不同Jar包中的公共类:
- 1.让父ClassLoader加载公共的Jar,子ClassLoader加载包含公共Jar的Jar,此时子ClassLoader在加载公共Jar的时候会先去父ClassLoader中找。(只适用Java)
- 2.重写加载包含公共Jar的Jar的ClassLoader,在loadClass中找到已经加载过公共Jar的ClassLoader,也就是把父ClassLoader替换掉。(只适用Java)
- 3.在生成包含公共Jar的Jar时候把公共Jar去掉。
23.插件化框架描述:dynamicLoadApk为例子
- 1.可以通过DexClassLoader来对apk中的dex包进行加载访问
- 2.如何加载资源是个很大的问题,因为宿主程序中并没有apk中的资源,所以调用R资源会报错,所以这里使用了Activity中的实现ContextImpl的getAssets()和getResources()再加上反射来实现。
- 3.由于系统启动Activity有很多初始化动作要做,而我们手动反射很难完成,所以可以采用接口机制,将Activity的大部分生命周期提取成接口,然后通过代理Activity去调用插件Activity的生命周期。同时如果像增加一个新生命周期方法的时候,只需要在接口中和代理中声明一下就行。
- 4.缺点:
- 1.慎用this,因为在apk中使用this并不代表宿主中的activity,当然如果this只是表示自己的接口还是可以的。除此之外可以使用that代替this。
- 2.不支持Service和静态注册的Broadcast
- 3.不支持LaunchMode和Apk中Activity的隐式调用。
24.热修复:Andfix为例子
- 1.大致原理:apkpatch将两个apk做一次对比,然后找出不同的部分。可以看到生成的apatch了文件,后缀改成zip再解压开,里面有一个dex文件。通过jadx查看一下源码,里面就是被修复的代码所在的类文件,这些更改过的类都加上了一个_CF的后缀,并且变动的方法都被加上了一个叫@MethodReplace的annotation,通过clazz和method指定了需要替换的方法。然后客户端sdk得到补丁文件后就会根据annotation来寻找需要替换的方法。最后由JNI层完成方法的替换。
- 2.无法添加新类和新的字段、补丁文件很容易被反编译、加固平台可能会使热补丁功能失效
25.线程同步的问题,常用的线程同步
- 1.sycn:保证了原子性、可见性、有序性
- 2.锁:保证了原子性、可见性、有序性
- 1.自旋锁:可以使线程在没有取得锁的时候,不被挂起,而转去执行一个空循环。
- 1.优点:线程被挂起的几率减少,线程执行的连贯性加强。用于对于锁竞争不是很激烈,锁占用时间很短的并发线程。
- 2.缺点:过多浪费CPU时间,有一个线程连续两次试图获得自旋锁引起死锁
- 2.阻塞锁:没得到锁的线程等待或者挂起,Sycn、Lock
- 3.可重入锁:一个线程可多次获取该锁,Sycn、Lock
- 4.悲观锁:每次去拿数据的时候都认为别人会修改,所以会阻塞全部其他线程 Sycn、Lock
- 5.乐观锁:每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。cas
- 6.显示锁和内置锁:显示锁用Lock来定义、内置锁用synchronized。
- 7.读-写锁:为了提高性能,Java提供了读
- 1.自旋锁:可以使线程在没有取得锁的时候,不被挂起,而转去执行一个空循环。
- 3.volatile
- 1.只能保证可见性,不能保证原子性
- 2.自增操作有三步,此时多线程写会出现问题
- 4.cas
- 1.操作:内存值V、旧的预期值A、要修改的值B,当且仅当预期值A和内存值V相同时,将内存值修改为B并返回true,否则什么都不做并返回false。
- 2.解释:本地副本为A,共享内存为V,线程A要把V修改成B。某个时刻线程A要把V修改成B,如果A和V不同那么就表示有其他线程在修改V,此时就表示修改失败,否则表示没有其他线程修改,那么把V改成B。
- 3.局限:如果V被修改成V1然后又被改成V,此时cas识别不出变化,还是认为没有其他线程在修改V,此时就会有问题
- 4.局限解决:将V带上版本。
- 5.线程不安全到底是怎么回事:
- 1.一个线程写,多个线程读的时候,会造成写了一半就去读
- 2.多线程写,会造成脏数据
26.Asynctask和线程池,GC相关(怎么判断哪些内存该GC,GC算法)
- 1.Asynctask:异步任务类,单线程线程池+Handler
- 2.线程池:
- 1.ThreadPoolExecutor:通过Executors可以构造单线程池、固定数目线程池、不固定数目线程池。
- 2.ScheduledThreadPoolExecutor:可以延时调用线程或者延时重复调度线程。
- 3.GC相关:重要
- 1.搜索算法:
- 1.引用计数
- 2.图搜索,可达性分析
- 2.回收算法:
- 1.标记清除复制:用于青年代
- 2.标记整理:用于老年代
- 3.堆分区:
- 1.青年区eden 80%、survivor1 10%、survivor2 10%
- 2.老年区
- 4.虚拟机栈分区:
- 1.局部变量表
- 2.操作数栈
- 3.动态链接
- 4.方法返回地址
- 5.GC Roots:
- 1.虚拟机栈(栈桢中的本地变量表)中的引用的对象
- 2.方法区中的类静态属性引用的对象
- 3.方法区中的常量引用的对象
- 4.本地方法栈中JNI的引用的对象
- 1.搜索算法:
27.网络
- 1.ARP协议:在IP以太网中,当一个上层协议要发包时,有了该节点的IP地址,ARP就能提供该节点的MAC地址。
- 2.HTTP HTTPS的区别:
- 1.HTTPS使用TLS(SSL)进行加密
- 2.HTTPS缺省工作在TCP协议443端口
- 3.它的工作流程一般如以下方式:
- 1.完成TCP三次同步握手
- 2.客户端验证服务器数字证书,通过,进入步骤3
- 3.DH算法协商对称加密算法的密钥、hash算法的密钥
- 4.SSL安全加密隧道协商完成
- 5.网页以加密的方式传输,用协商的对称加密算法和密钥加密,保证数据机密性;用协商的hash算法进行数据完整性保护,保证数据不被篡改
- 3.http请求包结构,http返回码的分类,400和500的区别
- 1.包结构:
- 1.请求:请求行、头部、数据
- 2.返回:状态行、头部、数据
- 2.http返回码分类:1到5分别是,消息、成功、重定向、客户端错误、服务端错误
- 1.包结构:
- 4.Tcp
- 1.可靠连接,三次握手,四次挥手
- 1.三次握手:防止了服务器端的一直等待而浪费资源,例如只是两次握手,如果s确认之后c就掉线了,那么s就会浪费资源
- 1.syn-c = x,表示这消息是x序号
- 2.ack-s = x + 1,表示syn-c这个消息接收成功。syn-s = y,表示这消息是y序号。
- 3.ack-c = y + 1,表示syn-s这条消息接收成功
- 1.三次握手:防止了服务器端的一直等待而浪费资源,例如只是两次握手,如果s确认之后c就掉线了,那么s就会浪费资源
- 2.四次挥手:TCP是全双工模式
- 1.fin-c = x , 表示现在需要关闭c到s了。ack-c = y,表示上一条s的消息已经接收完毕
- 2.ack-s = x + 1,表示需要关闭的fin-c消息已经接收到了,同意关闭
- 3.fin-s = y + 1,表示s已经准备好关闭了,就等c的最后一条命令
- 4.ack-c = y + 1,表示c已经关闭,让s也关闭
- 3.滑动窗口,停止等待、后退N、选择重传
- 4.拥塞控制,慢启动、拥塞避免、加速递减、快重传快恢复
- 1.可靠连接,三次握手,四次挥手
28.数据库性能优化:索引和事务,需要找本专门的书大概了解一下
29.13.APK打包流程和其内容
- 1.流程
- 1.aapt生成R文件
- 2.aidl生成java文件
- 3.将全部java文件编译成class文件
- 4.将全部class文件和第三方包合并成dex文件
- 5.将资源、so文件、dex文件整合成apk
- 6.apk签名
- 7.apk字节对齐
- 1.aapt生成R文件
- 2.内容:so、dex、asset、资源文件
30.网络劫持的类型原理:可以百度一下了解一下具体概念
- 1.DNS劫持、欺骗、污染
- 2.http劫持:重定向、注入js,http注入、报文扩展
面试结束后,一定要学会总结经验,无论是这次面试有没有成功,对你后面来说都是有帮助的。也是一次好的经历。学习Android入门,并不难但是后面你就会知道,学习不难,学好很难,所以我们需要不断吸取别人的经验,把别人的东西变为自己的东西。需要系统化学系才能学好。一点要学会总结自己的经验。这样才能不断成长。
写在最后:能看到这里的人,我挺佩服你的.这篇文章是我在头条面试之前整理的,最后80%的题目都命中了,所以祝你好运.
学习进阶篇
以下是近年来,我和一些朋友面试收集整理了很多大厂的面试真题和资料,还有来自如阿里、小米、爱奇艺等一线大厂的大牛整理的架构进阶资料。在这里分享出来,希望可以帮助到大家。
欢迎加入群聊:875911285(记得备注)到管理员处领取资料,或者点击下面链接可以直接领取哦。
Android学习PDF+架构视频+面试文档+源码笔记
百万年薪必刷面试题
最全Android进阶学习视频
Android进阶核心知识点
最强Android进阶学习路线图