版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。版权声明:禁止转载,欢迎学习。
Spark商业环境实战及调优进阶系列
- Spark商业环境实战-Spark内置框架rpc通讯机制及RpcEnv基础设施
- Spark商业环境实战-Spark事件监听总线流程分析
1. Spark 内置框架rpc通讯机制
TransportContext 内部握有创建TransPortClient和TransPortServer的方法实现,但却属于最底层的RPC通讯设施。为什么呢?
因为成员变量RPCHandler是抽象的,并没有具体的消息处理,而且TransportContext功能也在于创建TransPortClient客户端和TransPortServer服务端。具体解释如下:
Contains the context to create a {@link TransportServer}, {@link TransportClientFactory}, and to
setup Netty Channel pipelines with a
{@link org.apache.spark.network.server.TransportChannelHandler}.
所以TransportContext只能为最底层的通讯基础。上层为NettyRPCEnv高层封装,并持有TransportContext引用,在TransportContext中传入NettyRpcHandler实体,来实现netty通讯回调Handler处理。TransportContext代码片段如下:
/* The TransportServer and TransportClientFactory both create a TransportChannelHandler for each
* channel. As each TransportChannelHandler contains a TransportClient, this enables server
* processes to send messages back to the client on an existing channel.
*/
public class TransportContext {
private final Logger logger = LoggerFactory.getLogger(TransportContext.class);
private final TransportConf conf;
private final RpcHandler rpcHandler;
private final boolean closeIdleConnections;
private final MessageEncoder encoder;
private final MessageDecoder decoder;
public TransportContext(TransportConf conf, RpcHandler rpcHandler) {
this(conf, rpcHandler, false);
}
1.1 客户端和服务端统一的消息接收处理器 TransportChannelHandlerer
TransportClient 和TransportServer 在配置Netty的pipeLine的handler处理器时,均采用TransportChannelHandler, 来做统一的消息receive处理。为什么呢?在于统一消息处理入口,TransportChannelHandlerer根据消息类型执行不同的处理,代码片段如下:
public void channelRead(ChannelHandlerContext ctx, Object request) throws Exception {
if (request instanceof RequestMessage) {
requestHandler.handle((RequestMessage) request);
} else if (request instanceof ResponseMessage) {
responseHandler.handle((ResponseMessage) request);
} else {
ctx.fireChannelRead(request);
}
}
TransportContext初始化Pipeline的代码片段:
public TransportChannelHandler initializePipeline(
SocketChannel channel,
RpcHandler channelRpcHandler) {
try {
TransportChannelHandler channelHandler = createChannelHandler(channel,
channelRpcHandler);
channel.pipeline()
.addLast("encoder", ENCODER)
.addLast(TransportFrameDecoder.HANDLER_NAME, NettyUtils.createFrameDecoder())
.addLast("decoder", DECODER)
.addLast("idleStateHandler", new IdleStateHandler(0, 0,
conf.connectionTimeoutMs() / 1000))
.addLast("handler", channelHandler);
return channelHandler;
} catch (RuntimeException e) {
logger.error("Error while initializing Netty pipeline", e);
throw e;
}
客户端和服务端统一的消息接收处理器 TransportChannelHandlerer 是这个函数:createChannelHandler(channel, channelRpcHandler)实现的,也即统一了这个netty的消息接受处理,代码片段如下:
/**
* Creates the server- and client-side handler which is used to handle both RequestMessages and
* ResponseMessages. The channel is expected to have been successfully created, though certain
* properties (such as the remoteAddress()) may not be available yet.
*/
private TransportChannelHandler createChannelHandler(Channel channel, RpcHandler rpcHandler) {
TransportResponseHandler responseHandler = new
TransportResponseHandler(channel);
TransportClient client = new TransportClient(channel, responseHandler);
TransportRequestHandler requestHandler = new TransportRequestHandler(channel, client,
rpcHandler, conf.maxChunksBeingTransferred());
return new TransportChannelHandler(client, responseHandler, requestHandler,
conf.connectionTimeoutMs(), closeIdleConnections);
}
不过transportClient对应的是TransportResponseHander,TransportServer对应的的是TransportRequestHander。
在进行消息处理时,首先会经过TransportChannelHandler根据消息类型进行处理器选择,分别进行netty的消息生命周期管理:
- exceptionCaught
- channelActive
- channelInactive
- channelRead
- userEventTriggered
1.2 transportClient对应的是ResponseMessage
客户端一旦发送消息(均为Request消息),就会在
private final Map
private final Map
中缓存,用于回调处理。
1.3 transportServer对应的是RequestMessage
服务端接收消息类型(均为Request消息)
- ChunkFetchRequest
- RpcRequest
- OneWayMessage
- StremRequest
服务端响应类型(均为Response消息):
- ChunkFetchSucess
- ChunkFetchFailure
- RpcResponse
- RpcFailure
2. Spark RpcEnv基础设施
2.1 上层建筑NettyRPCEnv
上层建筑NettyRPCEnv,持有TransportContext引用,在TransportContext中传入NettyRpcHandler实体,来实现netty通讯回调Handler处理
- Dispatcher
- TransportContext
- TransPortClientFactroy
- TransportServer
- TransportConf
2.2 RpcEndPoint 与 RPCEndPointRef 端点
- RpcEndPoint 为服务端
- RPCEndPointRef 为客户端
2.2 Dispacher 与 Inbox 与 Outbox
- 一个端点对应一个Dispacher,一个Inbox , 多个OutBox
- RpcEndpoint:RPC端点 ,Spark针对于每个节点(Client/Master/Worker)都称之一个Rpc端点 ,且都实现RpcEndpoint接口,内部根据不同端点的需求,设计不同的消息和不同的业务处理,如果需要发送(询问)则调用Dispatcher
- RpcEnv:RPC上下文环境,每个Rpc端点运行时依赖的上下文环境称之为RpcEnv
- Dispatcher:消息分发器,针对于RPC端点需要发送消息或者从远程RPC接收到的消息,分发至对应的指令收件箱/发件箱。如果指令接收方是自己存入收件箱,如果指令接收方为非自身端点,则放入发件箱
- Inbox:指令消息收件箱,一个本地端点对应一个收件箱,Dispatcher在每次向Inbox存入消息时,都将对应EndpointData加入内部待Receiver Queue中,另外Dispatcher创建时会启动一个单独线程进行轮询Receiver Queue,进行收件箱消息消费
- OutBox:指令消息发件箱,一个远程端点对应一个发件箱,当消息放入Outbox后,紧接着将消息通过TransportClient发送出去。消息放入发件箱以及发送过程是在同一个线程中进行,这样做的主要原因是远程消息分为RpcOutboxMessage, OneWayOutboxMessage两种消息,而针对于需要应答的消息直接发送且需要得到结果进行处理
- TransportClient:Netty通信客户端,根据OutBox消息的receiver信息,请求对应远程TransportServer
- TransportServer:Netty通信服务端,一个RPC端点一个TransportServer,接受远程消息后调用Dispatcher分发消息至对应收发件箱
Spark在Endpoint的设计上核心设计即为Inbox与Outbox,其中Inbox核心要点为:
- 内部的处理流程拆分为多个消息指令(InboxMessage)存放入Inbox
- 当Dispatcher启动最后,会启动一个名为【dispatcher-event-loop】的线程扫描Inbox待处理InboxMessage,并调用Endpoint根据InboxMessage类型做相应处理
- 当Dispatcher启动最后,默认会向Inbox存入OnStart类型的InboxMessage,Endpoint在根据OnStart指令做相关的额外启动工作,端点启动后所有的工作都是对OnStart指令处理衍生出来的,因此可以说OnStart指令是相互通信的源头。
-
注意: 一个端点对应一个Dispacher,一个Inbox , 多个OutBox,可以看到 inbox在Dispacher 中且在EndPointData内部:
private final RpcHandler rpcHandler; /** * A message dispatcher, responsible for routing RPC messages to the appropriate endpoint(s). */ private[netty] class Dispatcher(nettyEnv: NettyRpcEnv) extends Logging { private class EndpointData( val name: String, val endpoint: RpcEndpoint, val ref: NettyRpcEndpointRef) { val inbox = new Inbox(ref, endpoint) } private val endpoints = new ConcurrentHashMap[String, EndpointData] private val endpointRefs = new ConcurrentHashMap[RpcEndpoint, RpcEndpointRef] // Track the receivers whose inboxes may contain messages. private val receivers = new LinkedBlockingQueue[EndpointData]
-
注意: 一个端点对应一个Dispacher,一个Inbox , 多个OutBox,可以看到 OutBox在NettyRpcEnv内部:
private[netty] class NettyRpcEnv( val conf: SparkConf, javaSerializerInstance: JavaSerializerInstance, host: String, securityManager: SecurityManager) extends RpcEnv(conf) with Logging { private val dispatcher: Dispatcher = new Dispatcher(this) private val streamManager = new NettyStreamManager(this) private val transportContext = new TransportContext(transportConf, new NettyRpcHandler(dispatcher, this, streamManager)) /** * A map for [[RpcAddress]] and [[Outbox]]. When we are connecting to a remote [[RpcAddress]], * we just put messages to its [[Outbox]] to implement a non-blocking `send` method. */ private val outboxes = new ConcurrentHashMap[RpcAddress, Outbox]()
2.3 Dispacher 与 Inbox 与 Outbox
Dispatcher的代码片段中,包含了核心的消息发送代码逻辑,意思是:向服务端发送一条消息,也即同时放进Dispatcher中的receiverrs中,也放进inbox的messages中。这个高层封装,如Master和Worker端点发送消息都是通过NettyRpcEnv中的 Dispatcher来实现的。在Dispatcher中有一个线程,叫做MessageLoop,实现消息的及时处理。
/**
* Posts a message to a specific endpoint.
*
* @param endpointName name of the endpoint.
* @param message the message to post
* @param callbackIfStopped callback function if the endpoint is stopped.
*/
private def postMessage(
endpointName: String,
message: InboxMessage,
callbackIfStopped: (Exception) => Unit): Unit = {
val error = synchronized {
val data = endpoints.get(endpointName)
if (stopped) {
Some(new RpcEnvStoppedException())
} else if (data == null) {
Some(new SparkException(s"Could not find $endpointName."))
} else {
data.inbox.post(message)
receivers.offer(data)
None
}
}
注意:默认第一条消息为onstart,为什么呢?看这里:
看到下面的 new EndpointData(name, endpoint, endpointRef) 了吗?
def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {
val addr = RpcEndpointAddress(nettyEnv.address, name)
val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)
synchronized {
if (stopped) {
throw new IllegalStateException("RpcEnv has been stopped")
}
if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {
throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")
}
val data = endpoints.get(name)
endpointRefs.put(data.endpoint, data.ref)
receivers.offer(data) // for the OnStart message
}
endpointRef
}
注意EndpointData里面包含了inbox,因此Inbox初始化的时候,放进了onstart
private class EndpointData(
val name: String,
val endpoint: RpcEndpoint,
val ref: NettyRpcEndpointRef) {
val inbox = new Inbox(ref, endpoint)
}
onstart在Inbox初始化时出现了,注意每一个端点只有一个inbox,比如:master 节点。
2.4 发送消息流程为分为两种,一种端点(Master)自己把消息发送到本地Inbox,一种端点(Master)接收到消息后,通过TransPortRequestHander接收后处理,扔进Inbox
2.4.1 端点(Master)自己把消息发送到本地Inbox
- endpoint(Master) -> NettyRpcEnv-> Dispatcher -> postMessage -> MessageLoop(Dispatcher) -> inbox -> process -> endpoint.receiveAndReply
解释如下:端点通过自己的RPCEnv环境,向自己的Inbox中发送消息,然后交由Dispatch来进行消息的处理,调用了端点自己的receiveAndReply方法
-
这里着重讲一下MessageLoop是什么时候启动的,参照Dispatcher的代码段如下,一旦初始化就会启动,因为是成员变量:
private val threadpool: ThreadPoolExecutor = { val numThreads = nettyEnv.conf.getInt("spark.rpc.netty.dispatcher.numThreads", math.max(2, Runtime.getRuntime.availableProcessors())) val pool = ThreadUtils.newDaemonFixedThreadPool(numThreads, "dispatcher-event-loop") for (i <- 0 until numThreads) { pool.execute(new MessageLoop) } pool }
接着讲nettyRpcEnv是何时初始化的,Dispatcher是何时初始化的?
master初始化RpcEnv环境时,调用NettyRpcEnvFactory().create(config)进行初始化nettyRpcEnv,然后其成员变量Dispatcher开始初始化,然后Dispatcher内部成员变量threadpool开始启动messageLoop,然后开始处理消息,可谓是一环套一环啊。如下是Master端点初始化RPCEnv。
在NettyRpcEnv中,NettyRpcEnvFactory的create方法如下:
其中nettyRpcEnv.startServer,代码段如下,然后调用底层 transportContext.createServer来创建Server,并初始化netty 的 pipeline:
server = transportContext.createServer(host, port, bootstraps)
dispatcher.registerRpcEndpoint(
RpcEndpointVerifier.NAME, new RpcEndpointVerifier(this, dispatcher))
最终端点开始不断向自己的Inboxz中发送消息即可,代码段如下:
private def postMessage(
endpointName: String,
message: InboxMessage,
callbackIfStopped: (Exception) => Unit): Unit = {
error = synchronized {
val data = endpoints.get(endpointName)
if (stopped) {
Some(new RpcEnvStoppedException())
} else if (data == null) {
Some(new SparkException(s"Could not find $endpointName."))
} else {
data.inbox.post(message)
receivers.offer(data)
None
}
}
2.4.2 端点(Master)接收到消息后,通过TransPortRequestHander接收后处理,扔进Inbox
- endpointRef(Worker) ->TransportChannelHandler -> channelRead0 -> TransPortRequestHander -> handle -> processRpcRequest ->NettyRpcHandler(在NettyRpcEnv中) -> receive -> internalReceive -> dispatcher.postToAll(RemoteProcessConnected(remoteEnvAddress)) (响应)-> dispatcher.postRemoteMessage(messageToDispatch, callback) (发送远端来的消息放进inbox)-> postMessage -> inbox -> process
如下图展示了整个消息接收到inbox的流程:
下图展示了 TransportChannelHandler接收消息:
@Override
public void channelRead0(ChannelHandlerContext ctx, Message request) throws Exception {
if (request instanceof RequestMessage) {
requestHandler.handle((RequestMessage) request);
} else {
responseHandler.handle((ResponseMessage) request);
}
}
然后TransPortRequestHander来进行消息匹配处理:
最终交给inbox的process方法,实际上由端点 endpoint.receiveAndReply(context)方法处理:
/**
* Process stored messages.
*/
def process(dispatcher: Dispatcher): Unit = {
var message: InboxMessage = null
inbox.synchronized {
if (!enableConcurrent && numActiveThreads != 0) {
return
}
message = messages.poll()
if (message != null) {
numActiveThreads += 1
} else {
return
}
}
while (true) {
safelyCall(endpoint) {
message match {
case RpcMessage(_sender, content, context) =>
try {
endpoint.receiveAndReply(context).applyOrElse[Any, Unit](content, { msg =>
throw new SparkException(s"Unsupported message $message from ${_sender}")
})
} catch {
case NonFatal(e) =>
context.sendFailure(e)
// Throw the exception -- this exception will be caught by the safelyCall function.
// The endpoint's onError function will be called.
throw e
}
case OneWayMessage(_sender, content) =>
endpoint.receive.applyOrElse[Any, Unit](content, { msg =>
throw new SparkException(s"Unsupported message $message from ${_sender}")
})
case OnStart =>
endpoint.onStart()
if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {
inbox.synchronized {
if (!stopped) {
enableConcurrent = true
}
}
}
case OnStop =>
val activeThreads = inbox.synchronized { inbox.numActiveThreads }
assert(activeThreads == 1,
s"There should be only a single active thread but found $activeThreads threads.")
dispatcher.removeRpcEndpointRef(endpoint)
endpoint.onStop()
assert(isEmpty, "OnStop should be the last message")
case RemoteProcessConnected(remoteAddress) =>
endpoint.onConnected(remoteAddress)
case RemoteProcessDisconnected(remoteAddress) =>
endpoint.onDisconnected(remoteAddress)
case RemoteProcessConnectionError(cause, remoteAddress) =>
endpoint.onNetworkError(cause, remoteAddress)
}
}
inbox.synchronized {
// "enableConcurrent" will be set to false after `onStop` is called, so we should check it
// every time.
if (!enableConcurrent && numActiveThreads != 1) {
// If we are not the only one worker, exit
numActiveThreads -= 1
return
}
message = messages.poll()
if (message == null) {
numActiveThreads -= 1
return
}
}
}
}
3 结语
本文花了将近两天时间进行剖析Spark的 Rpc 工作原理,真是不容易,关键是你看懂了吗?欢迎评论
秦凯新 于深圳 2018-10-28