TensorFlow入门极简教程(七):训练卷积神经网络并保存模型,加载模型

模型训练和保存

import tensorflow as tf
from  tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import os

# 屏蔽waring信息
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

"""------------------加载数据---------------------"""
# 载入数据
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
# 改变数据格式,为了能够输入卷积层
trX = trX.reshape(-1, 28, 28, 1)  # -1表示不考虑输入图片的数量,1表示单通道
teX = teX.reshape(-1, 28, 28, 1)

"""------------------构建模型---------------------"""
# 定义输入输出的数据容器
X = tf.placeholder("float", [None, 28, 28, 1])
Y = tf.placeholder("float", [None, 10])


# 定义和初始化权重、dropout参数
def init_weights(shape):
    return tf.Variable(tf.random_normal(shape, stddev=0.01))


w1 = init_weights([3, 3, 1, 32])        # 3X3的卷积核,获得32个特征
w2 = init_weights([3, 3, 32, 64])       # 3X3的卷积核,获得64个特征
w3 = init_weights([3, 3, 64, 128])      # 3X3的卷积核,获得128个特征
w4 = init_weights([128 * 4 * 4, 625])   # 从卷积层到全连层
w_o = init_weights([625, 10])           # 从全连层到输出层

p_keep_conv = tf.placeholder("float")
p_keep_hidden = tf.placeholder("float")


# 定义模型
def create_model(X, w1, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden):
    # 第一组卷积层和pooling层
    conv1 = tf.nn.conv2d(X, w1, strides=[1, 1, 1, 1], padding='SAME')
    conv1_out = tf.nn.relu(conv1)
    pool1 = tf.nn.max_pool(conv1_out, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    pool1_out = tf.nn.dropout(pool1, p_keep_conv)

    # 第二组卷积层和pooling层
    conv2 = tf.nn.conv2d(pool1_out, w2, strides=[1, 1, 1, 1], padding='SAME')
    conv2_out = tf.nn.relu(conv2)
    pool2 = tf.nn.max_pool(conv2_out, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    pool2_out = tf.nn.dropout(pool2, p_keep_conv)

    # 第三组卷积层和pooling层
    conv3 = tf.nn.conv2d(pool2_out, w3, strides=[1, 1, 1, 1], padding='SAME')
    conv3_out = tf.nn.relu(conv3)
    pool3 = tf.nn.max_pool(conv3_out, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    pool3 = tf.reshape(pool3, [-1, w4.get_shape().as_list()[0]])  # 转化成一维的向量
    pool3_out = tf.nn.dropout(pool3, p_keep_conv)

    # 全连层
    fully_layer = tf.matmul(pool3_out, w4)
    fully_layer_out = tf.nn.relu(fully_layer)
    fully_layer_out = tf.nn.dropout(fully_layer_out, p_keep_hidden)

    # 输出层
    out = tf.matmul(fully_layer_out, w_o)

    return out


model = create_model(X, w1, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden)

# 定义代价函数、训练方法、预测操作
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(model, 1,name="predict")

# 定义一个saver
saver=tf.train.Saver()

# 定义存储路径
ckpt_dir="./ckpt_dir2"
if not os.path.exists(ckpt_dir):
    os.makedirs(ckpt_dir)

"""------------------训练模型---------------------"""
train_batch_size = 128  # 训练集的mini_batch_size=128
test_batch_size = 256   # 测试集中调用的batch_size=256
epoches = 5  # 迭代周期
with tf.Session() as sess:
    """-------训练模型--------"""
    # 初始化所有变量
    tf.global_variables_initializer().run()

    # 训练操作
    for i in range(epoches):
        train_batch = zip(range(0, len(trX), train_batch_size),
                          range(train_batch_size, len(trX) + 1, train_batch_size))
        for start, end in train_batch:
            sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end],
                                          p_keep_conv: 0.8, p_keep_hidden: 0.5})
        # 每个周期用测试集中随机抽出test_batch_size个图片进行测试
        test_indices = np.arange(len(teX))  # 返回一个array[0,1...len(teX)]
        np.random.shuffle(test_indices)     # 打乱这个array
        test_indices = test_indices[0:test_batch_size]

        # 获取测试集test_batch_size章图片的的预测结果
        predict_result = sess.run(predict_op, feed_dict={X: teX[test_indices],
                                                         p_keep_conv: 1.0,
                                                         p_keep_hidden: 1.0})
        # 获取真实的标签值
        true_labels = np.argmax(teY[test_indices], axis=1)

        # 计算准确率
        accuracy = np.mean(true_labels == predict_result)
        print("epoch", i, ":", accuracy)

        # 保存模型
        saver.save(sess,ckpt_dir+"/model.ckpt",global_step=i)

输出:

Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

epoch 0 : 0.953125
epoch 1 : 0.98828125
epoch 2 : 0.984375
epoch 3 : 0.99609375
epoch 4 : 0.9921875

存储路径:


TensorFlow入门极简教程(七):训练卷积神经网络并保存模型,加载模型_第1张图片

训练的时候,因为只有CPU,所以我只跑了5个迭代周期。

用Saver保存的模型的恢复

# 用Saver保存的模型的恢复

import tensorflow as tf
import numpy as np
import os
import cv2

# 屏蔽waring信息
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

"""------------------构建模型---------------------"""
# 定义输入输出的数据容器
X = tf.placeholder("float", [None, 28, 28, 1])
Y = tf.placeholder("float", [None, 10])


# 定义和初始化权重、dropout参数
def init_weights(shape):
    return tf.Variable(tf.random_normal(shape, stddev=0.01))

w1 = init_weights([3, 3, 1, 32])        # 3X3的卷积核,获得32个特征
w2 = init_weights([3, 3, 32, 64])       # 3X3的卷积核,获得64个特征
w3 = init_weights([3, 3, 64, 128])      # 3X3的卷积核,获得128个特征
w4 = init_weights([128 * 4 * 4, 625])   # 从卷积层到全连层
w_o = init_weights([625, 10])           # 从全连层到输出层

p_keep_conv = tf.placeholder("float")
p_keep_hidden = tf.placeholder("float")

# 定义模型
def create_model(X, w1, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden):
    # 第一组卷积层和pooling层
    conv1 = tf.nn.conv2d(X, w1, strides=[1, 1, 1, 1], padding='SAME')
    conv1_out = tf.nn.relu(conv1)
    pool1 = tf.nn.max_pool(conv1_out, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    pool1_out = tf.nn.dropout(pool1, p_keep_conv)

    # 第二组卷积层和pooling层
    conv2 = tf.nn.conv2d(pool1_out, w2, strides=[1, 1, 1, 1], padding='SAME')
    conv2_out = tf.nn.relu(conv2)
    pool2 = tf.nn.max_pool(conv2_out, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    pool2_out = tf.nn.dropout(pool2, p_keep_conv)

    # 第三组卷积层和pooling层
    conv3 = tf.nn.conv2d(pool2_out, w3, strides=[1, 1, 1, 1], padding='SAME')
    conv3_out = tf.nn.relu(conv3)
    pool3 = tf.nn.max_pool(conv3_out, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    pool3 = tf.reshape(pool3, [-1, w4.get_shape().as_list()[0]])  # 转化成一维的向量
    pool3_out = tf.nn.dropout(pool3, p_keep_conv)

    # 全连层
    fully_layer = tf.matmul(pool3_out, w4)
    fully_layer_out = tf.nn.relu(fully_layer)
    fully_layer_out = tf.nn.dropout(fully_layer_out, p_keep_hidden)

    # 输出层
    out = tf.matmul(fully_layer_out, w_o)

    return out


model = create_model(X, w1, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden)

# 定义代价函数、训练方法、预测操作
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=model, labels=Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(model, 1,name="predict")

# 定义一个saver
saver=tf.train.Saver()

# 定义存储路径
ckpt_dir="./ckpt_dir2"

with tf.Session() as sess:

    """-----加载模型,用导入的图片进行测试--------"""
    # 载入图片
    src = cv2.imread('./Pictures/8.png')
    cv2.imshow("Pending pictures", src) # 待测图片

    # 将图片转化为28*28的灰度图
    src = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
    dst = cv2.resize(src, (28, 28), interpolation=cv2.INTER_CUBIC)

    # 将灰度图转化为1*784的能够输入的网络的数组
    picture = np.zeros((28, 28))
    for i in range(0, 28):
        for j in range(0, 28):
            picture[i][j] = (255 - dst[i][j])
    picture = picture.reshape(1, 28, 28, 1)

    # 载入模型
    saver.restore(sess,ckpt_dir+"/model.ckpt-4")

    # 进行预测
    predict_result = sess.run(predict_op, feed_dict={X: picture,
                                                    p_keep_conv: 1.0,
                                                    p_keep_hidden: 1.0})
    print("你导入的图片是:",predict_result[0])
    cv2.waitKey(20190320)

    # 关闭会话
    sess.close()

输出:


TensorFlow入门极简教程(七):训练卷积神经网络并保存模型,加载模型_第2张图片

你导入的图片是: 8

注意:

  • 用MINIST训练出来的模型。主要用来识别手写数字的,而且对输入的图片要求是近似黑底白字的,所以如果图片预处理不合适会导致识别率不高。
  • 如果直接用官方的图片输 入,则识别完全没问题

你可能感兴趣的:(TensorFlow入门极简教程(七):训练卷积神经网络并保存模型,加载模型)