python爬取链家租房之获取房屋的链接和页面的详细信息

因为期末考试的缘故,本打算一个星期结束的爬虫,拖了很久,不过,也有好处:之前写的时候总是被反爬,这几天复习之余写了些反爬取的py code 下面发出来和大家探讨
做了些反爬取的手段

随机获取一个headers

headers.py
__author__ = 'Lee'
import requests
import random #随机数模块

def requests_headers():
    head_connection = ['Keep-Alive','close']
    head_accept = ['text/html,application/xhtml+xml,*/*']
    head_accept_language = ['zh-CN,fr-FR;q=0.5','en-US,en;q=0.8,zh-Hans-CN;q=0.5,zh-Hans;q=0.3']
    head_user_agent = ['Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko',
                       'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.95 Safari/537.36',
                       'Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; rv:11.0) like Gecko)',
                       'Mozilla/5.0 (Windows; U; Windows NT 5.2) Gecko/2008070208 Firefox/3.0.1',
                       'Mozilla/5.0 (Windows; U; Windows NT 5.1) Gecko/20070309 Firefox/2.0.0.3',
                       'Mozilla/5.0 (Windows; U; Windows NT 5.1) Gecko/20070803 Firefox/1.5.0.12',
                       'Opera/9.27 (Windows NT 5.2; U; zh-cn)',
                       'Mozilla/5.0 (Macintosh; PPC Mac OS X; U; en) Opera 8.0',
                       'Opera/8.0 (Macintosh; PPC Mac OS X; U; en)',
                       'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.12) Gecko/20080219 Firefox/2.0.0.12 Navigator/9.0.0.6',
                       'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Win64; x64; Trident/4.0)',
                       'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0)',
                       'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.2; .NET4.0C; .NET4.0E)',
                       'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Maxthon/4.0.6.2000 Chrome/26.0.1410.43 Safari/537.1 ',
                       'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.2; .NET4.0C; .NET4.0E; QQBrowser/7.3.9825.400)',
                       'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:21.0) Gecko/20100101 Firefox/21.0 ',
                       'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.92 Safari/537.1 LBBROWSER',
                       'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; BIDUBrowser 2.x)',
                       'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/3.0 Safari/536.11']

    #header 为随机产生一套由上边信息的header文件
    header = {
        'Connection':head_connection[random.randrange(0,len(head_connection))],
        'Accept':head_accept[0],
        'Accept-Language':head_accept_language[random.randrange(0,len(head_accept_language))],
        'User-Agent':head_user_agent[random.randrange(0,len(head_user_agent))],
    }
    print('headers.py connection Success!')
    return header #返回值为 header这个字典




                # for i in range(100): #随机产生100套信息
                #     print(requests_headers()) #打印
                #     #print(random.randrange(1,10))


从IP池随机选择个代理IP

ip_proxy.py
__author__ = 'Lee'
import random
ip_pool = [
'117.143.109.136:80'
]

def ip_proxy():
    ip = ip_pool[random.randrange(0,len(ip_pool))]
    proxy_ip = 'http://'+ip
    proxies = {'http':proxy_ip}
    print(proxies)
    return proxies

items_combination.py

__author__ = 'Lee'
from bs4 import BeautifulSoup
import requests
import pymongo
import time
from headers import  requests_headers
from ip_proxy import ip_proxy
client = pymongo.MongoClient('localhost',27017) #链接数据库
ceshi = client['ceshi']
url_list = ceshi['url_list']
item_list = ceshi['item_info']
url_list1 = []

channel = 'https://bj.lianjia.com/zufang/dongcheng/'
#spider1 爬取房屋信息链接并用mongodb存储
def get_pages_url(channel,pag):
    url = str(channel+'pg'+ pag)
    wb_data = requests.get(url,headers=requests_headers(),proxies=ip_proxy())
    soup = BeautifulSoup(wb_data.text,'lxml')
    time.sleep(1)
    no_data = '呣..没有找到相关内容,请您换个条件试试吧~'
    # 面包屑模块
    # 面包屑 breadcrumbs
    bread_crumbs =soup.select('#house-lst > li')
    item_url = soup.select('#house-lst > li > div > h2 > a')
    blank_url = str(soup.find(text = no_data))
    if no_data != blank_url:
        for url in item_url:
            url1 = url.get('href')
            url_list1.append(url1)
            #url_list.insert_one({'url':url1})
            print(url1)
    else:
        pass
#get_pages_url(channel,'2')
# spider2 爬取详细信息并用mongodb存储
def get_massages(url):
    web_data = requests.get(url,headers=requests_headers(),proxies=ip_proxy())
    soup = BeautifulSoup(web_data.text,'lxml')
    title = (soup.title.text).split('|')[0] #房名
    address = soup.select('div.zf-room > p > a')[0].text  #地址
    price = soup.select(' div.price > span.total')[0].text + '元'
    area = (soup.select('div.zf-room > p ')[0].text).split(':')[-1]
    home_url = url
    print({'title':title ,
           'address':address,
           'price':price,
           'area':area,
           'home_url':home_url,
           })
    item_list.insert_one({'title':title ,
           'address':address,
           'price':price,
           'area':area,
           'home_url':home_url})
get_massages('https://bj.lianjia.com/zufang/101101635089.html')

'''
#house-lst > li > p
list-no-data clear
'''


你可能感兴趣的:(python爬取链家租房之获取房屋的链接和页面的详细信息)