第十二届蓝桥杯嵌入式模拟测试(HAL库)

前言

这是笔者第一次用HAL库以及STM32G4系列编写程序,其中颇有不足,请多多指正!

题目要求

框架图

第十二届蓝桥杯嵌入式模拟测试(HAL库)_第1张图片

功能要求

基本功能

  1. 测量竞赛板上电位器R37输出的模拟电压信号VR37,并通过LCD实现数据的实时显示。
  2. 通过按键完成显示界面切换、参数设置等功能。
  3. 通过LED指示灯完成状态指示功能。
  4. 输出指定频率、占空比的PWM信号。
  5. 设计要求:
    • 电压数据刷新时间:≤0.5秒。
    • 按键响应时间:≤0.1秒。
    • 根据试题要求设计合理的电压数据采样频率,并对ADC采样到的电压数据进行有效的数字滤波。

显示功能

  1. 数据界面
    通过液晶屏显示三个数据项,包括:界面名称Data、电位器R37输出的电压值V和电压状态A,电压值保留小数点后2位有效数字。
    第十二届蓝桥杯嵌入式模拟测试(HAL库)_第2张图片
  2. 参数界面
    通过液晶屏显示三个数据项,包括界面名称Para、电压参数Vmax和Vmin。电压参数保留小数点后1位有效数字。
    第十二届蓝桥杯嵌入式模拟测试(HAL库)_第3张图片
    显示说明:
  • 显示背景色(BackColor):黑色。
  • 显示前景色(TextColor):白色。
  • 严格按照图示要求设计各信息项的名称,区分字母大小写和行列位置。
  1. 电压状态
  • 当V > Vmax时,电压状态为1。
  • 当V < Vmin时,电压状态为2。
  • 当Vmin ≤ V ≤ Vmax时,电压状态为3。

按键功能

  1. B1:界面切换按键,切换选择数据界面或参数界面。

  2. B2:每次按下B2按键,Vmax参数减0.1V,当参数减到0.0V,再次按下B2后返回3.3V。

  3. B3:每次按下B3按键,Vmin参数加0.1V,当参数加到3.3V,再次按下B3后返回0.0V。

  4. 当设备从参数界面退出,返回数据界面时,自动判断当前设置的参数是否合理,如参数合理则使之生效,如不合理,则弃用本次设置的参数,使用进入参数界面前的原参数。

备注:

  • B2和B3按键仅在参数设置界面有效。
  • 要求Vmax ≥ Vmin + 0.5V。
  • 要求Vmax、Vmin可设置范围为0.0V-3.3V。

信号输出与LED功能要求

  1. 电压状态为1时,通过PA1输出信号100Hz,占空比50%,LD1点亮,其余熄灭。

  2. 电压状态为2时,通过PA1输出信号1KHz,占空比80%,LD2点亮,其余熄灭。

  3. 电压状态为3时,通过PA1输出信号10KHz,占空比20%,LD3点亮,其余熄灭。

状态说明

  1. 上电后,默认处于数据界面。
  2. 上电默认参数:
    - Vmax: 3.0V
    - Vmin: 1.0V

思路

大体思路

  1. 计算所需IO口和资源
  2. 初始化各个模块
  3. 完成各个模块功能
  4. 整合各功能

部分功能实现方法

功能切换

通过按键B1来触发EXTI0中断,在中断函数中反转自定义标志位Flag的值(0或1),在while循环中根据Flag的值来执行相关操作。

PWM输出

该题中需要动态调整PWM。但不能在每个循环中都去设置PWM的参数,所以可以自定义一个临时变量,来保存上一次的状态A的值,若发生变化后再进行设置。

代码

因为是竞赛类比赛,非做项目,为了方便,把所有代码放在main.c中了。

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * 

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */
/* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stdio.h" #include "string.h" #include "lcd.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc2; TIM_HandleTypeDef htim2; /* USER CODE BEGIN PV */ uint8_t KEY1_Flag = 0; char Vmax_Text[30]; char Vmin_Text[30]; char ADC_Text[30]; char A_Text[30]; double Vmax = 3.0; double Vmin = 1.0; uint16_t abc; double V; uint8_t A; uint8_t temp = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC2_Init(void); static void MX_TIM2_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ //获取模拟信号的值 double getADC() { HAL_ADC_Start(&hadc2); abc = HAL_ADC_GetValue(&hadc2); return (abc*3.3/4096); } //调整A的值 void Set_A(void) { if(V > Vmax){ A = 1; } if(V < Vmin){ A = 2; } if(V > Vmin && V <= Vmax){ A = 3; } } //设置PWM波频率和占空比 void Set_PWM_LED() { /***************************************************************** 1) 电压状态为1时,通过PA1输出信号100Hz,占空比50%,LD1点亮,其余熄灭。 2) 电压状态为2时,通过PA1输出信号1KHz,占空比80%,LD2点亮,其余熄灭。 3) 电压状态为3时,通过PA1输出信号10KHz,占空比20%,LD3点亮,其余熄灭。 *******************************************************************/ HAL_TIM_PWM_Stop(&htim2,TIM_CHANNEL_2); MX_TIM2_Init(); if(A == 1){ __HAL_TIM_SET_COMPARE(&htim2,TIM_CHANNEL_2,5000); __HAL_TIM_SET_AUTORELOAD(&htim2,9999); HAL_GPIO_WritePin(GPIOC,GPIO_PIN_All,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOC,GPIO_PIN_8,GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET); } if(A == 2){ __HAL_TIM_SET_COMPARE(&htim2,TIM_CHANNEL_2,800); __HAL_TIM_SET_AUTORELOAD(&htim2,999); HAL_GPIO_WritePin(GPIOC,GPIO_PIN_All,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOC,GPIO_PIN_9,GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET); } if(A == 3){ __HAL_TIM_SET_COMPARE(&htim2,TIM_CHANNEL_2,20); __HAL_TIM_SET_AUTORELOAD(&htim2,99); HAL_GPIO_WritePin(GPIOC,GPIO_PIN_All,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOC,GPIO_PIN_10,GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET); } HAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_2); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_ADC2_Init(); MX_TIM2_Init(); /* USER CODE BEGIN 2 */ //初始化LED HAL_GPIO_WritePin(GPIOC,GPIO_PIN_All,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET); //初始化LCD LCD_Init(); LCD_Clear(White); LCD_SetBackColor(White); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE BEGIN 3 */ V = getADC(); temp = A; Set_A(); //判断A是否发生了变化,如果发生变化则调整PWM和LED的参数 if(A != temp) Set_PWM_LED(); //利用中断调整Flag的值,来切换状态 if(KEY1_Flag == 0){ if(Vmax < Vmin + 0.5){ Vmax = 3.0; Vmin = 0; } LCD_SetTextColor(Red); LCD_DisplayStringLine(Line1, (uint8_t *)" Data "); sprintf(ADC_Text," V: %.2fV ",V); LCD_DisplayStringLine(Line3, (uint8_t *)ADC_Text); sprintf(A_Text," A: %d ",A); LCD_DisplayStringLine(Line4, (uint8_t *)A_Text); } if(KEY1_Flag == 1){ LCD_SetTextColor(Red); LCD_DisplayStringLine(Line1, (uint8_t *)" Para "); sprintf(Vmax_Text,"Vmax: %.1fV ",Vmax); LCD_DisplayStringLine(Line3, (uint8_t *)Vmax_Text); sprintf(Vmin_Text,"Vmin: %.1fV ",Vmin); LCD_DisplayStringLine(Line4, (uint8_t *)Vmin_Text); } } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = { 0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = { 0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3; RCC_OscInitStruct.PLL.PLLN = 20; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK) { Error_Handler(); } /** Initializes the peripherals clocks */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12; PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /** * @brief ADC2 Initialization Function * @param None * @retval None */ static void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_ChannelConfTypeDef sConfig = { 0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Common config */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.GainCompensation = 0; hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc2.Init.LowPowerAutoWait = DISABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.NbrOfConversion = 1; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.DMAContinuousRequests = DISABLE; hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc2.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_15; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC2_Init 2 */ /* USER CODE END ADC2_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = { 0}; TIM_OC_InitTypeDef sConfigOC = { 0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 79; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 9999; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_OC_Init(&htim2) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 5000; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ HAL_TIM_MspPostInit(&htim2); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = { 0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_8 |GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, GPIO_PIN_RESET); /*Configure GPIO pins : PC13 PC14 PC15 PC8 PC9 PC10 PC11 PC12 */ GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_8 |GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : PB0 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : PB1 PB2 */ GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : PD2 */ GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI0_IRQn); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI1_IRQn, 1, 0); HAL_NVIC_EnableIRQ(EXTI1_IRQn); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI2_IRQn, 2, 0); HAL_NVIC_EnableIRQ(EXTI2_IRQn); } /* USER CODE BEGIN 4 */ /** * @brief This function handles EXTI line0 interrupt. */ void EXTI0_IRQHandler(void) { /* USER CODE BEGIN EXTI0_IRQn 1 */ if(__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_0) != RESET){ KEY1_Flag = !KEY1_Flag; __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_0); } /* USER CODE END EXTI0_IRQn 1 */ } /** * @brief This function handles EXTI line0 interrupt. */ void EXTI1_IRQHandler(void) { /* USER CODE BEGIN EXTI0_IRQn 1 */ if(__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_1) != RESET){ if(KEY1_Flag == 1){ if(Vmax >= 0){ Vmax -= 0.1; } else{ Vmax = 3; } } __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_1); } /* USER CODE END EXTI0_IRQn 1 */ } /** * @brief This function handles EXTI line0 interrupt. */ void EXTI2_IRQHandler(void) { /* USER CODE BEGIN EXTI0_IRQn 1 */ if(__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_2) != RESET){ if(KEY1_Flag == 1){ if(Vmin <= 3.3){ Vmin += 0.1; } else{ Vmin = 0; } } __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_2); } /* USER CODE END EXTI0_IRQn 1 */ } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

问题

  • 其中对ADC采样到的电压数据进行有效的数字滤波这个需求不知道如何下手,采用均值滤波或者平均值滤波还要考虑做到实时显示的需求,现在还没有头绪,希望大佬多多指点!
  • 开发版设计有一定缺陷,其中按键到IO的过程中没有设计电容,导致在按键中断中还存在抖动现象。

你可能感兴趣的:(STM32,单片机,嵌入式)