RPC(Remote Procedure Call Protocol)——远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发包括网络分布式多程序在内的应用程序更加容易。
RPC采用客户机/服务器模式。请求程序就是一个客户机,而服务提供程序就是一个服务器。首先,客户机调用进程发送一个有进程参数的调用信息到服务进程,然后等待应答信息。在服务器端,进程保持睡眠状态直到调用信息到达为止。当一个调用信息到达,服务器获得进程参数,计算结果,发送答复信息,然后等待下一个调用信息,最后,客户端调用进程接收答复信息,获得进程结果,然后调用执行继续进行。
运行时,一次客户机对服务器的RPC调用,其内部操作大致有如下十步:
1.调用客户端句柄;执行传送参数
2.调用本地系统内核发送网络消息
3.消息传送到远程主机
4.服务器句柄得到消息并取得参数
5.执行远程过程
6.执行的过程将结果返回服务器句柄
7.服务器句柄返回结果,调用远程系统内核
8.消息传回本地主机
9.客户句柄由内核接收消息
10.客户接收句柄返回的数据
nio 是New IO 的简称,在jdk1.4 里提供的新api 。
Sun 官方标榜的特性如下:为所有的原始类型提供(Buffer)缓存支持。字符集编码解码解决方案。
Channel :一个新的原始I/O 抽象。 支持锁和内存映射文件的文件访问接口。
提供多路(non-bloking) 非阻塞式的高伸缩性网络I/O 。
使用传统的I/O程序读取文件内容, 并写入到另一个文件(或Socket), 如下程序:
File.read(fileDesc, buf, len);
Socket.send(socket, buf, len);
会有较大的性能开销, 主要表现在一下两方面:
- 上下文切换(context switch), 此处有4次用户态和内核态的切换
- Buffer内存开销, 一个是应用程序buffer, 另一个是系统读取buffer以及socket buffer
1) 先将文件内容从磁盘中拷贝到操作系统buffer
2) 再从操作系统buffer拷贝到程序应用buffer
3) 从程序buffer拷贝到socket buffer
4) 从socket buffer拷贝到协议引擎.
NIO技术省去了将操作系统的read buffer拷贝到程序的buffer, 以及从程序buffer拷贝到socket buffer的步骤, 直接将 read buffer 拷贝到 socket buffer. java 的 FileChannel.transferTo() 方法就是这样的实现, 这个实现是依赖于操作系统底层的sendFile()实现的.
publicvoid transferTo(long position, long count, WritableByteChannel target);
他的底层调用的是系统调用sendFile()方法
sendfile(int out_fd, int in_fd, off_t *offset, size_t count);
Netty是基于Java NIO的网络应用框架.
Netty是一个NIO client-server(客户端服务器)框架,使用Netty可以快速开发网络应用,例如服务器和客户端协议。Netty提供了一种新的方式来使开发网络应用程序,这种新的方式使得它很容易使用和有很强的扩展性。Netty的内部实现时很复杂的,但是Netty提供了简单易用的api从网络处理代码中解耦业务逻辑。Netty是完全基于NIO实现的,所以整个Netty都是异步的。
网络应用程序通常需要有较高的可扩展性,无论是Netty还是其他的基于Java NIO的框架,都会提供可扩展性的解决方案。Netty中一个关键组成部分是它的异步特性.
package com.netty.demo.server;
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.Channel;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.nio.NioServerSocketChannel;
/**
* • 配置服务器功能,如线程、端口 • 实现服务器处理程序,它包含业务逻辑,决定当有一个请求连接或接收数据时该做什么
*
* @author wilson
*
*/
public class EchoServer {
private final int port;
public EchoServer(int port) {
this.port = port;
}
public void start() throws Exception {
EventLoopGroup eventLoopGroup = null;
try {
//创建ServerBootstrap实例来引导绑定和启动服务器
ServerBootstrap serverBootstrap = new ServerBootstrap();
//创建NioEventLoopGroup对象来处理事件,如接受新连接、接收数据、写数据等等
eventLoopGroup = new NioEventLoopGroup();
//指定通道类型为NioServerSocketChannel,设置InetSocketAddress让服务器监听某个端口已等待客户端连接。
serverBootstrap.group(eventLoopGroup).channel(NioServerSocketChannel.class).localAddress("localhost",port).childHandler(new ChannelInitializer() {
//设置childHandler执行所有的连接请求
@Override
protected void initChannel(Channel ch) throws Exception {
ch.pipeline().addLast(new EchoServerHandler());
}
});
// 最后绑定服务器等待直到绑定完成,调用sync()方法会阻塞直到服务器完成绑定,然后服务器等待通道关闭,因为使用sync(),所以关闭操作也会被阻塞。
ChannelFuture channelFuture = serverBootstrap.bind().sync();
System.out.println("开始监听,端口为:" + channelFuture.channel().localAddress());
channelFuture.channel().closeFuture().sync();
} finally {
eventLoopGroup.shutdownGracefully().sync();
}
}
public static void main(String[] args) throws Exception {
new EchoServer(20000).start();
}
}
package com.netty.demo.server;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelFutureListener;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import java.util.Date;
public class EchoServerHandler extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg)
throws Exception {
System.out.println("server 读取数据……");
//读取数据
ByteBuf buf = (ByteBuf) msg;
byte[] req = new byte[buf.readableBytes()];
buf.readBytes(req);
String body = new String(req, "UTF-8");
System.out.println("接收客户端数据:" + body);
//向客户端写数据
System.out.println("server向client发送数据");
String currentTime = new Date(System.currentTimeMillis()).toString();
ByteBuf resp = Unpooled.copiedBuffer(currentTime.getBytes());
ctx.write(resp);
}
@Override
public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
System.out.println("server 读取数据完毕..");
ctx.flush();//刷新后才将数据发出到SocketChannel
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause)
throws Exception {
cause.printStackTrace();
ctx.close();
}
}
package com.netty.demo.client;
import io.netty.bootstrap.Bootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;
import java.net.InetSocketAddress;
/**
* • 连接服务器 • 写数据到服务器 • 等待接受服务器返回相同的数据 • 关闭连接
*
* @author wilson
*
*/
public class EchoClient {
private final String host;
private final int port;
public EchoClient(String host, int port) {
this.host = host;
this.port = port;
}
public void start() throws Exception {
EventLoopGroup nioEventLoopGroup = null;
try {
//创建Bootstrap对象用来引导启动客户端
Bootstrap bootstrap = new Bootstrap();
//创建EventLoopGroup对象并设置到Bootstrap中,EventLoopGroup可以理解为是一个线程池,这个线程池用来处理连接、接受数据、发送数据
nioEventLoopGroup = new NioEventLoopGroup();
//创建InetSocketAddress并设置到Bootstrap中,InetSocketAddress是指定连接的服务器地址
bootstrap.group(nioEventLoopGroup).channel(NioSocketChannel.class).remoteAddress(new InetSocketAddress(host, port))
.handler(new ChannelInitializer() {
//添加一个ChannelHandler,客户端成功连接服务器后就会被执行
@Override
protected void initChannel(SocketChannel ch)
throws Exception {
ch.pipeline().addLast(new EchoClientHandler());
}
});
// • 调用Bootstrap.connect()来连接服务器
ChannelFuture f = bootstrap.connect().sync();
// • 最后关闭EventLoopGroup来释放资源
f.channel().closeFuture().sync();
} finally {
nioEventLoopGroup.shutdownGracefully().sync();
}
}
public static void main(String[] args) throws Exception {
new EchoClient("localhost", 20000).start();
}
}
package com.netty.demo.client;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufUtil;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler;
public class EchoClientHandler extends SimpleChannelInboundHandler<ByteBuf> {
//客户端连接服务器后被调用
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
System.out.println("客户端连接服务器,开始发送数据……");
byte[] req = "QUERY TIME ORDER".getBytes();
ByteBuf firstMessage = Unpooled.buffer(req.length);
firstMessage.writeBytes(req);
ctx.writeAndFlush(firstMessage);
}
//• 从服务器接收到数据后调用
@Override
protected void channelRead0(ChannelHandlerContext ctx, ByteBuf msg) throws Exception {
System.out.println("client 读取server数据..");
//服务端返回消息后
ByteBuf buf = (ByteBuf) msg;
byte[] req = new byte[buf.readableBytes()];
buf.readBytes(req);
String body = new String(req, "UTF-8");
System.out.println("服务端数据为 :" + body);
}
//• 发生异常时被调用
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
System.out.println("client exceptionCaught..");
// 释放资源
ctx.close();
}
}
Handler在netty中,无疑占据着非常重要的地位。Handler与Servlet中的filter很像,通过Handler可以完成通讯报文的解码编码、拦截指定的报文、统一对日志错误进行处理、统一对请求进行计数、控制Handler执行与否。一句话,没有它做不到的只有你想不到的。
Netty中的所有handler都实现自ChannelHandler接口。按照输出输出来分,分为ChannelInboundHandler、ChannelOutboundHandler两大类。ChannelInboundHandler对从客户端发往服务器的报文进行处理,一般用来执行解码、读取客户端数据、进行业务处理等;ChannelOutboundHandler对从服务器发往客户端的报文进行处理,一般用来进行编码、发送报文到客户端。
Netty中,可以注册多个handler。ChannelInboundHandler按照注册的先后顺序执行;ChannelOutboundHandler按照注册的先后顺序逆序执行,如下图所示,按照注册的先后顺序对Handler进行排序,request进入Netty后的执行顺序为:
在使用Handler的过程中,需要注意:
1、ChannelInboundHandler之间的传递,通过调用 ctx.fireChannelRead(msg) 实现;调用ctx.write(msg) 将传递到ChannelOutboundHandler。
2、ctx.write()方法执行后,需要调用flush()方法才能令它立即执行。
3、流水线pipeline中outhandler不能放在最后,否则不生效
4、Handler的消费处理放在最后一个处理。
Netty中,通讯的双方建立连接后,会把数据按照ByteBuf的方式进行传输,例如http协议中,就是通过HttpRequestDecoder对ByteBuf数据流进行处理,转换成http的对象。基于这个思路,我自定义一种通讯协议:Server和客户端直接传输java对象。
实现的原理是通过Encoder把java对象转换成ByteBuf流进行传输,通过Decoder把ByteBuf转换成java对象进行处理。
在我们平常使用的RPC中,例如webservice,使用的习惯类似于下图
但是netty的实现过于底层,我们不能够像以前一样只关心方法的调用,而是要关心数据的传输,对于不熟悉netty的开发者,需要了解很多netty的概念和逻辑,才能实现RPC的调用。
应上面的需求,我们需要基于netty实现一个我们熟悉的RPC框架。逻辑如下:
在上面的框架中,server端存在着一个问题,就是单点问题,也就是说,当服务端“挂了”之后,框架的使用就造成了单点屏障。
我们可以通过zookeeper来实现服务端的负载均衡
项目源码点我