Kafka 消费者总共有 3 种 API,新版 API、旧版高级 API、旧版低级 API,新版 API 是在 kafka 0.9 版本后增加的,推荐使用新版 API,但由于旧版低级 API 可以对消息进行更加灵活的控制,所有在实际开发中使用的也较多,本文讨论消费者旧版低级 API 的基本使用。
旧版低级 API 处理以下场景更为方便:
- 消息重复消费
- 添加事务管理机制,保证 Exactly Once
- 消费指定分区或者指定分区的某些片段
使用旧版低级 API的步骤:
- 获取你要读取的topic的partition的元数据信息
- 找到这个partition的leader节点,然后通过这个leader节点找到存有这个partition副本的节点
- 构造消费请求,获取数据并处理
- 手动管理偏移量
- 识别并处理分区leader节点的改变
以下示例代码实现的功能是,指定主题和分区,从该分区的第一条记录开始读取数据,打印到控制台:
package com.bonc.rdpe.kafka110.consumer;
import java.nio.ByteBuffer;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.FetchResponse;
import kafka.javaapi.TopicMetadataRequest;
import kafka.javaapi.TopicMetadataResponse;
import kafka.javaapi.OffsetRequest;
import kafka.javaapi.OffsetResponse;
import kafka.javaapi.PartitionMetadata;
import kafka.javaapi.TopicMetadata;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset;
/**
* @Title SimpleConsumerTest.java
* @Description Kafka旧版消费者API——低级API
* @Author YangYunhe
* @Date 2018-06-26 13:16:29
*/
public class SimpleConsumerTest {
// broker list
private static final String BROKER_LIST = "192.168.42.101,192.168.42.102,192.168.42.103";
// 连接超时时间:1min
private static final int TIME_OUT = 60 * 1000;
// 读取消息缓存区大小:1M
private static final int BUFFER_SIZE = 1024 * 1024;
// 每次获取消息的条数
private static final int FETCH_SIZE = 100000;
// 发生错误时重试的次数
private static final int RETRIES_TIME = 3;
// 允许发生错误的最大次数
private static final int MAX_ERROR_NUM = 3;
/**
* 获取指定主题指定分区的元数据
*/
private PartitionMetadata fetchPartitionMetadata(List brokerList, int port, String topic, int partitionId) {
SimpleConsumer consumer = null;
TopicMetadataRequest metadataRequest = null;
TopicMetadataResponse metadataResponse = null;
List topicMetadatas = null;
try{
/*
* 循环是因为不确定传入的partition的leader节点是哪个
*/
for(String host : brokerList) {
// 1. 构建一个消费者,它是获取元数据的执行者
consumer = new SimpleConsumer(host, port, TIME_OUT, BUFFER_SIZE, "dev3-client-001"); // 最后一个参数是 clientId
// 2. 构造请求主题元数据的 request
metadataRequest = new TopicMetadataRequest(Arrays.asList(topic));
// 3. 发送请求获取元数据
try {
metadataResponse = consumer.send(metadataRequest);
} catch (Exception e) {
System.out.println("get TopicMetadataResponse failed!");
e.printStackTrace();
continue;
}
// 4. 获取主题元数据列表
topicMetadatas = metadataResponse.topicsMetadata();
// 5. 提取主题元数据列表中指定分区的元数据信息
for(TopicMetadata topicMetadata : topicMetadatas) {
for(PartitionMetadata partitionMetadata : topicMetadata.partitionsMetadata()) {
if(partitionMetadata.partitionId() != partitionId) {
continue;
} else {
return partitionMetadata;
}
}
}
}
} catch (Exception e) {
System.out.println("Fetch PartitionMetadata failed!");
e.printStackTrace();
} finally {
if(consumer != null) {
consumer.close();
}
}
return null;
}
/**
* 根据分区的元数据信息获取它的leader节点
*/
private String getLeader(PartitionMetadata metadata) {
if(metadata.leader() == null) {
System.out.println("can not find partition" + metadata.partitionId() + "'s leader!");
return null;
}
return metadata.leader().host();
}
/**
* 重新寻找partition的leader节点的方法
*/
private String findNewLeader(List brokerList, String oldLeader, String topic, int partition, int port) throws Exception {
for (int i = 0; i < 3; i++) {
boolean goToSleep = false;
PartitionMetadata metadata = fetchPartitionMetadata(brokerList, port, topic, partition);
if (metadata == null) {
goToSleep = true;
} else if (metadata.leader() == null) {
goToSleep = true;
} else if (oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) {
// 这里考虑到 zookeeper 还没有来得及重新选举 leader 或者在故障转移之前挂掉的 leader 又重新连接的情况
goToSleep = true;
} else {
return metadata.leader().host();
}
if (goToSleep) {
Thread.sleep(1000);
}
}
System.out.println("Unable to find new leader after Broker failure!");
throw new Exception("Unable to find new leader after Broker failure!");
}
/**
* 获取指定主题指定分区的消费偏移量
*/
private long getOffset(SimpleConsumer consumer, String topic, int partition, long beginTime, String clientName) {
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map requestInfo = new HashMap<>();
/*
* PartitionOffsetRequestInfo(beginTime, 1)用于配置获取offset的策略
* beginTime有两个值可以取
* kafka.api.OffsetRequest.EarliestTime(),获取最开始的消费偏移量,不一定是0,因为segment会删除
* kafka.api.OffsetRequest.LatestTime(),获取最新的消费偏移量
* 另一个参数 1 暂不清楚有什么意义
*/
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(beginTime, 1));
// 构造获取offset的请求
OffsetRequest request = new OffsetRequest(requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request);
if(response.hasError()) {
System.out.println("get offset failed!" + response.errorCode(topic, partition));
return -1;
}
long[] offsets = response.offsets(topic, partition);
if(offsets == null || offsets.length == 0) {
System.out.println("get offset failed! offsets is null");
return -1;
}
return offsets[0];
}
/**
* 处理数据的方法
*/
public void consume(List brokerList, int port, String topic, int partition) {
SimpleConsumer consumer = null;
try {
// 1. 获取分区元数据信息
PartitionMetadata metadata = fetchPartitionMetadata(brokerList, port, topic, partition);
if(metadata == null) {
System.out.println("can not find metadata!");
return;
}
// 2. 找到分区的leader节点
String leaderBroker = getLeader(metadata);
String clientId = topic + "-" + partition + "-" + "client";
// 3. 创建一个消费者用于消费消息
consumer = new SimpleConsumer(leaderBroker, port, TIME_OUT, BUFFER_SIZE, clientId);
// 4. 配置获取offset的策略为,获取分区最开始的消费偏移量
long offset = getOffset(consumer, topic, partition, kafka.api.OffsetRequest.EarliestTime(), clientId);
int errorCount = 0;
FetchRequest request = null;
FetchResponse response = null;
while(offset > -1) {
// 运行过程中,可能因为处理错误,把consumer置为 null,所以这里需要再实例化
if(consumer == null) {
consumer = new SimpleConsumer(leaderBroker, port, TIME_OUT, BUFFER_SIZE, clientId);
}
// 5. 构建获取消息的request
request = new FetchRequestBuilder().clientId(clientId).addFetch(topic, partition, offset, FETCH_SIZE).build();
// 6. 获取响应并处理
response = consumer.fetch(request);
if(response.hasError()) {
errorCount ++;
if(errorCount > MAX_ERROR_NUM) {
break;
}
short errorCode = response.errorCode(topic, partition);
if(ErrorMapping.OffsetOutOfRangeCode() == errorCode) {
// 如果是因为获取到的偏移量无效,那么应该重新获取
// 这里简单处理,改为获取最新的消费偏移量
offset = getOffset(consumer, topic, partition, kafka.api.OffsetRequest.LatestTime(), clientId);
continue;
} else if (ErrorMapping.OffsetsLoadInProgressCode() == errorCode) {
Thread.sleep(300000);
continue;
} else {
consumer.close();
consumer = null;
// 更新leader broker
leaderBroker = findNewLeader(brokerList, leaderBroker, topic, partition, port);
continue;
}
// 如果没有错误
} else {
errorCount = 0; // 清空错误记录
long fetchCount = 0;
// 处理消息
for(MessageAndOffset messageAndOffset : response.messageSet(topic, partition)) {
long currentOffset = messageAndOffset.offset();
if(currentOffset < offset) {
System.out.println("get an old offset[" + currentOffset + "], excepted offset is offset[" + offset + "]");
continue;
}
offset = messageAndOffset.nextOffset();
ByteBuffer payload = messageAndOffset.message().payload();
byte[] bytes = new byte[payload.limit()];
payload.get(bytes);
// 把消息打印到控制台
System.out.println("message: " + new String(bytes, "UTF-8") + ", offset: " + messageAndOffset.offset());
fetchCount++;
}
if (fetchCount == 0) {
Thread.sleep(1000);
}
}
}
} catch (Exception e) {
System.out.println("exception occurs when consume message");
e.printStackTrace();
} finally {
if (consumer != null) {
consumer.close();
}
}
}
public static void main(String[] args) {
SimpleConsumerTest sct = new SimpleConsumerTest();
sct.consume(Arrays.asList(BROKER_LIST.split(",")), 9092, "dev3-yangyunhe-topic001", 0);
}
}
运行结果为:
message: t13229543255|13229543255|2017-10-04 05:04:19|2017-10-04 05:04:19|01001|x13229543255|75165|UaiOKGnr|wx|1003|0, offset: 0
message: t15554236866|15554236866|2017-10-04 20:50:36|2017-10-04 20:50:36|01001|x15554236866|66815|cLhDPEfl|wx|1001|0, offset: 1
message: t13053448010|13053448010|2018-04-01 18:22:27|2018-04-01 18:22:27|01001|x13053448010|67860|UTpzF05R|wx|1005|1, offset: 2
message: t13016064334|13016064334|2017-07-01 15:10:31|2017-07-01 15:10:31|01001|x13016064334|78549|nzbMDJXs|wx|1005|0, offset: 3
message: t13025257802|13025257802|2018-01-21 18:49:55|2018-01-21 18:49:55|01001|x13025257802|39067|zOHLBrje|wx|1003|0, offset: 4
......