Unet如何制作自己的训练集

最近一直在学unet,所以分享一个如何做一个自己想要的训练集,而不是去从网上找的博客。
首先打开cmd
在这里插入图片描述
输入你自己的虚拟环境,我是在base直接把所有环境都安好了,就不想在创建虚拟环境在安装了。
然后

pip install labelme==3.16.7

Unet如何制作自己的训练集_第1张图片
下载好了之后直接输入labelme
Unet如何制作自己的训练集_第2张图片

这就是打开后的样子
然后对所选择的图形进行描图,就像这样
Unet如何制作自己的训练集_第3张图片
最后他会在你的指定文件下生成一个josn文件,你现在还不能直接打开这个josn文件,需要运行代码

import argparse
import base64
import json
import os
import os.path as osp
import warnings

import numpy as np
import PIL.Image
import yaml
from labelme import utils


if __name__ == '__main__':
    jpgs_path = "datasets/JPEGImages"
    pngs_path = "datasets/SegmentationClass"
    classes = ["_background_", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
               "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train",
               "tvmonitor"]
    # classes = ["_background_","cat","dog"]

    count = os.listdir("./datasets/before/")
    for i in range(0, len(count)):
        path = os.path.join("./datasets/before", count[i])

        if os.path.isfile(path) and path.endswith('json'):
            data = json.load(open(path))

            if data['imageData']:
                imageData = data['imageData']
            else:
                imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
                with open(imagePath, 'rb') as f:
                    imageData = f.read()
                    imageData = base64.b64encode(imageData).decode('utf-8')

            img = utils.img_b64_to_arr(imageData)
            label_name_to_value = {
     '_background_': 0}
            for shape in data['shapes']:
                label_name = shape['label']
                if label_name in label_name_to_value:
                    label_value = label_name_to_value[label_name]
                else:
                    label_value = len(label_name_to_value)
                    label_name_to_value[label_name] = label_value

            # label_values must be dense
            label_values, label_names = [], []
            for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
                label_values.append(lv)
                label_names.append(ln)
            assert label_values == list(range(len(label_values)))

            lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

            PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0] + '.jpg'))

            new = np.zeros([np.shape(img)[0], np.shape(img)[1]])
            for name in label_names:
                index_json = label_names.index(name)
                index_all = classes.index(name)
                new = new + index_all * (np.array(lbl) == index_json)

            utils.lblsave(osp.join(pngs_path, count[i].split(".")[0] + '.png'), new)
            print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')

在这里说一下classes这一行代码,这个是需要你根据你所处理图像里面的内容而定的。这里需要稍做修改。

最后,你所需要的unet训练集就出来了。

你可能感兴趣的:(python,深度学习,机器学习,tensorflow)