彼得森(Ivars Peterson)在《当代数学研讨》一文中曾说:“对大多数外行人来说,现代数学是一块陌生的领地……数学是一个值得探索的世界……但可悲的是,外行人进入这一世界的道路似乎太少了。”
代数学作为数学中的重要分支,随着历史的发展,其抽象层次越来越高,到如今,近世代数(modern algebra)已经被称为“抽象代数”。
正如《代数的历史》的引言中也说:“代数学已经成为所有智力学科中最纯粹、最严格的学科,它的研究对象是对抽象的抽象的再抽象,非数学专业人士几乎无法领会到其成果的巨大威力和非凡魅力。”
许多人看到“抽象”二字就会敬而远之,更别说还和“代数”放到一起。我们能否找到进入代数世界的旅行指南呢?
虚与实:代数世界的旅行指南
《代数的历史》是为大众写的一本代数学历史书,你只需带上好奇心,就可以和作者一起踏上一段激动人心的数学之旅。
约翰·德比希尔(John Derbyshire)
本书的作者约翰·德比希尔(John Derbyshire)是一名小说家、数学科普作家、评论家和专栏作者,他与家人一起生活在纽约长岛。德比希尔在20世纪60年代就读于伦敦大学学院数学系。80年代以来一直为报纸和杂志撰写书评和评论。
德比希尔著有多部数学科普著作,其中《代数的历史》更是被美国数学学会选为必读读物,并被译为7种语言,享誉全球。
在本书中,数学和历史携手并进。为了帮助读者熟悉或回忆有关的数学概念,作者特意在章节之间穿插了数学基础知识作为铺垫。
全书共有6个这样的知识性章节:数与多项式、三次方程和四次方程、单位根、向量空间和代数、域论、代数几何。仅喜欢阅读故事,或已经熟知这些知识的读者可以跳过这些章节。当然,书中大部分数学符号和表述都是标准和通用的,因此接受过中学教育的读者想必都可以轻松读懂。
作者讲述了从公元前1800年到现代的代数历史,并根据不同的抽象层次把本书分成三个部分:未知量、普遍算术和抽象层次。他在引言中特别提到:“这本书不是教材,我只希望能够展示一些代数学概念的模样,以及后来的代数学概念是如何从先前的概念中发展而来的,哪些人扮演了重要的角色,历史背景又是怎样的。”
本书英文版出版于2005年,距今已有16年。首个中文译本出版于2010年,到现在也11年了。在中文译本面世之后,许多热心读者提出了改进建议。本次修订一方面借鉴了第一版翻译,另一方面也参考了诸如豆瓣书评里的各种建议。
因本次为修订版,中文译本书名延续第一版的《代数的历史:人类对未知量的不舍追踪》。原书名为Unknown quantity:a real and imaginary history of algebra,使用了双关的手法:real (number)和imaginary (number)在代数学(或更准确地说,在复数中)分别指代实数和虚数,而在日常中则表示真实和虚构——可以说,在历史中,这两个词也往往对应“史实”和“杜撰”。
《代数的历史》新旧书封
虚与实在绘画艺术、文学创作、建筑设计等领域也指代一种表现手法。虚与实的关系既是对立又是交叉的;实境和虚境相互渗透,可以创造出令人回味的深远意境。
历史的主体是生活在时空范围中的人,代数学的历史则是由那些数学个体和群体及其活动组成的。各种史书所选的材料本身在虚实程度上就各有不同,再经过作者(和译者)的加工,投影到文字上,引起读者想象的整个过程也是虚实相间的。
“每一部科学史书都是高度简化的‘成功’史”,真实的历史远比这本书所描绘的要长得多,而且许多失败和错误也没有流传下来。同样地,尽管历史讲述过去的事,但过去的事并不等同于历史,但凡有人对事实加以记录,就会带有其主观性和选择性。因此,这部代数学史本身就是时间与空间的虚与实的结合体。
修订版“修”了什么
与第一版相比,本次修订版从体例到文字都有不小的变化。尤其,我们在本次翻译和修订时,特收集了读者向出版社提出的勘误意见,以及豆瓣评论上的修改建议,与编辑在校对时一一对照。读者们提到的第一版译文中存在的诸如专业名词误译、人名和著作翻译等问题,在本次修订时,我们都做了更正。
比如,对于大众熟悉的数学家,我们尽量使用常见译名,必要时结合《世界人名翻译大辞典》词条,另外,我们也参考了张奠宙先生、李文林先生等的数学史著作中使用的译名。书中出现的数学经典著作的标题翻译,我们主要参考了《数学史概论》《数学的世界》《数学史通论》等数学史专著,像卡尔达诺的《机遇博弈》则参考了陈希孺院士的《数理统计学简史》。
针对读者提出的专业名词误译,我们也尽量予以改进。如Motivic cohomology(原书误拼为motivitic cohomology)一词在第一版时翻译为“原动力上同调”。这个翻译不仅让非数学专业人士摸不着头脑,数学专业人士也可能不知其为何物。
Motivic cohomology的中文翻译有动机上同调、恒机式上同调、母题上同调、原相上同调等,在本次修订时使用了“原相上同调”这一译法,这是黎景辉教授在《代数K理论》一书中建议的,与“现相”(realization)相对,颇有味道。另外母题上同调的译法也很有艺术韵味,“母题”的译法可能来自徐克舰教授,感兴趣的读者可以阅读徐教授的《格罗登迪克的Motive与塞尚的母题》。
另外,universal一词的译法我也纠结了许久。熟悉代数学的朋友都知晓“泛性质”或“万有性质”(universal property),因此universal algebra和universal construction的翻译应该是“泛代数”(“万有代数”)和“泛构造”(“万有构造”)。
但在书中,universal algebra是与牛顿的universal arithmetic相对,而李文林先生已经将牛顿的universal arithmetic翻译为普遍算术或通用算术,如果用“泛算术”或“万有算术”,反而可能会造成阅读障碍。因此universal arithmetic和universal algebra使用了“普遍算术”和“普遍代数”的译法。
为了让熟悉代数学的朋友不产生误解,在注释中解释了“普遍代数”和“泛代数”是同一含义,并且在翻译universal construction时仍采用了常见的“泛构造”的译法。
还要注意的是,书中的“阿拉伯数学”并非单指阿拉伯国家的数学,而是指中世纪阿拉伯帝国统治下的中亚和西亚地区的数学。我们知道,阿拉伯人在保存和传播印度、希腊和中国的文化,以及为欧洲文艺复兴做准备方面做出了巨大贡献。书中提到的花拉子密、海亚姆等都是杰出的数学家,并且阿拉伯语al-jabr传入欧洲逐渐演变成algebra,成为“代数”一词的来源。
此外,我还有个疑问,希望有读者朋友可以解释:书中提到1659年费马给出了费马大定理n=4时的粗略证明,“高斯很久之后才给出了完整的证明”(Gauss provided the complete proof much later)。我们知道欧拉在1753年就对n=3的更难的情形给出了证明,高斯生活的年代比欧拉更晚,完整的证明应该在高斯之前就已经存在,为什么说高斯很久之后才给出了完整的证明?
此次译稿如仍有其他问题和不妥之处,请读者指正。
历史进行时
与大多数讲述历史的书籍一样,这并不是一本事无巨细的数学史书。数学史专家西格尔(Sanford L. Segal)评价本书的写作风格有一点“非正式”,而且在讨论解析几何时漏掉了费马的工作,也没有提到布尔巴基学派。
因此,“严谨”的读者在阅读时可能会觉得“不完美”。当然西格尔坦言本书“没有什么明显的数学错误……除了偶尔的惊人之语外,介绍大多数人时是公正而准确的。德比希尔的书对它的目标受众来说是优秀的”。
另外,本书对一些历史内容有所取舍。第九章专门介绍了源自中国的求解线性方程的算法以及矩阵的概念。《九章算术》中的方程章所讲述的内容就是现代的解线性方程组的“高斯消元法”,这一点是毋庸置疑的。然而本书没有更多地讲述中国古代的以算法为核心的代数发展,如负数的引进,开平方和开立方的算法,求解同余方程组的大衍求一术(中国剩余定理)、三次方程及高次方程的数值解法、天元术和四元数等。
想要了解中国古代代数学发展的读者,可以阅读钱宝琮先生、李俨先生、梁宗巨先生、李迪先生、吴文俊先生、李文林先生等数学史专家的中国数学史著作。
原书出版后的十多年来,代数学及其相关领域蓬勃发展。2005年,庞加莱猜想的证明还没有被正式接纳,所以,本次修订时我们特补充了注释。书中提到了美国数学学会2000年的分类表,业界近十多年来更常用的是2010版的分类标准MSC2010,未来可能更常用的是2020年发布的最新分类标准MSC2020。
在翻译过程中,还有一件事让我们非常感慨。书中提到的一些数学家在最近十多年里离开了我们:桑德斯·麦克莱恩在2005年去世,塞尔日·兰在2005年去世,亨利·嘉当在2008年去世,瓦尔特·法伊特在2014年去世,格罗特迪克在2014年去世,约翰·纳什在2015年去世,符拉基米尔·弗沃特斯基在2017年去世,安德烈·苏斯林在2018年去世,阿蒂亚爵士在2019年去世,约翰·康威和理查德·盖伊在2020年相继去世。
他们的离去是数学界的巨大损失。我们当继承他们的伟大思想,继续踏上探寻未知量的旅程。
希望本次修订能将作者想表达的观点传播出去,期待更多人通过阅读本书感受代数的魅力,对代数、对数学产生兴趣。未来的代数学历史,等你来谱写!
译者简介:
张浩,基础数学博士,毕业于中国科学院大学,现从事数学教育工作。业余热衷于数学传播和普及,个人公众号“一只寻找函子的猫”不定期发布数学科普话题。曾参与翻译《蒲公英数学图画书》,另有数学文化类译文散见于《数学文化》、“数立方”网站及“和乐数学”公众号等。
点击下图购买
留言赠书
是什么让你对数学产生兴趣?快来说出你的故事!精选留言选出 3 位小伙伴获得最新上市的《代数的历史》。截止日期 2021 年 4 月28 日。
题图:freepik.com
图灵社区
「手不释卷·423世界读书日」
时间:4.20—4.26
全场电子书 6 折!
单笔订单满 199 减 20 元!
299 减 30 元!
推荐阅读:
深夜,这本书封面上的小人儿吵了起来……
当谈到微积分,你都会想到啥?
这10本豆瓣高分经典数学书,果断收藏!
喜欢这篇文章?点个“在看”吧~▼